Advertisement

Polymer Science Series A

, Volume 52, Issue 3, pp 317–327 | Cite as

Secondary structure of globules of copolymers consisting of amphiphilic and hydrophilic units: Effect of potential range

  • V. A. Ermilov
  • V. V. Vasilevskaya
  • A. R. Khokhlov
Modeling

Abstract

The relation of the coil-globule transition in macromolecules consisting of amphiphilic and hydrophilic monomer units to the radius of action of the interaction potential is investigated by the method of computer-assisted experiments. The internal structure of globules formed by such macromolecules is significantly dependent on the radius of action of the potential. In the case of the long-range potential, the globule is characterized by the blob structure, while in the case of the short-range potential, a quasi-helical structure forms. In this structure, the skeleton of a macromolecule forms a helical turn, and the direction of twisting may vary from one turn to another. The coil-globule transition in such macromolecules proceeds through formation of the necklace conformation from quasi-helical micelle beads. For sufficiently long macromolecules, the dimensions of such globules are linearly dependent on the degree of polymerization.

Keywords

Polymer Science Series Monomer Unit Aggregation Number Helical Conformation Polymerization Degree 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).CrossRefGoogle Scholar
  2. 2.
    I. M. Okhapkin, A. A. Askadskii, V. A. Markov, et al., Colloid Polym. Sci. 284, 575 (2006).CrossRefGoogle Scholar
  3. 3.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  4. 4.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  5. 5.
    A. A. Starostina, A. A. Klochkov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 50, 1008 (2008) [Vysokomol. Soedin., Ser. A 50, 1691 (2008)].CrossRefGoogle Scholar
  6. 6.
    V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 124, 144914 (2006).CrossRefGoogle Scholar
  7. 7.
    V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Polymer Science, Ser. A 50, 621 (2008).CrossRefGoogle Scholar
  8. 8.
    V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Macromol. Symp. 252, 24 (2007).CrossRefGoogle Scholar
  9. 9.
    V. V. Vasilevskaya, V. A. Markov, G. Ten Brinke, and A. R. Khokhlov, Macromolecules 41, 7722 (2008).CrossRefGoogle Scholar
  10. 10.
    V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 49, 1 (2007).CrossRefGoogle Scholar
  11. 11.
    D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry (Worth, New York, 2000).Google Scholar
  12. 12.
    A. V. Finkel’shtein and O. B. Ptitsyn, Physics of Proteins (Knizhnyi Dom “Universitet”, Moscow, 2002) [in Russian].Google Scholar
  13. 13.
    K. Hizume, T. Nakai, S. Araki, et al., Ultramicroscopy 109, 868 (2009).CrossRefGoogle Scholar
  14. 14.
    H. C. Andersen, J. Comput. Phys. 52, 24 (1983).CrossRefGoogle Scholar
  15. 15.
    K. Binder, Monte Carlo and Molecular Dynamics Simulations in Polymer Science (Oxford Univ. Press, Oxford, 1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • V. A. Ermilov
    • 1
  • V. V. Vasilevskaya
    • 1
  • A. R. Khokhlov
    • 1
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations