Polymer Science Series A

, Volume 52, Issue 2, pp 182–190 | Cite as

Microphase separation in the melts of diblock copolymers composed of linear and amphiphilic blocks

  • A. A. Glagoleva
  • V. V. Vasilevskaya
  • A. R. Khokhlov
Modeling

Abstract

Computer-aided simulation performed via two independent methods (the Monte Carlo method and method of dissipative particle dynamics) is performed for studying the effect of microphase separation in concentrated solutions of diblock copolymers composed of linear blocks A and amphiphilic blocks A-graft-B. The type of microstructures generated by strong incompatibility between units A and B is shown to be controlled by the ratio of block lengths. For example, in the case of short amphiphilic blocks, elongated micelles with correlated mutual alignment are formed. In the case of longer amphiphilic blocks, lamellar structures are produced; with an increase in the length of this block, these structures are transformed into sequences of lamellas containing parallel layers, lamellas with intersecting layers, and perforated lamellas. When the system contains long amphiphilic blocks, bicontinuous structures arise.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Block Copolymer in Nanosciences, Ed. by M. Lassazi, G. Liu, and S. Lecommandoux (Wiley-VCH, Weinheim, 2006).Google Scholar
  2. 2.
    L. Liebler, Macromolecules 13, 1602 (1980).CrossRefGoogle Scholar
  3. 3.
    A. N. Semenov, Zh. Eksp. Teor. Fiz. 88, 1242 (1985).Google Scholar
  4. 4.
    F. S. Bates and G. H. Fredrickson, Annu. Rev. Phys. Chem. 41, 525 (1990).CrossRefGoogle Scholar
  5. 5.
    E. L. Thomas, D. B. Alward, D. J. Kinning, and D. C. Martin, Macromolecules 19, 2197 (1986).CrossRefGoogle Scholar
  6. 6.
    D. A. Hajduk, P. E. Harper, S. M. Gruner, et al., Macromolecules 27, 4063 (1994).CrossRefGoogle Scholar
  7. 7.
    M. W. Matsen and F. S. Bates, J. Chem. Phys. 106, 2436 (1997).CrossRefGoogle Scholar
  8. 8.
    F. J. Martinez- Veracoechea and F. A. Escobedo, Macromolecules 40, 7354 (2007).CrossRefGoogle Scholar
  9. 9.
    V. V. Vasilevskaya, L. V. Gusev, A. R. Khokhlov, et al., Macromolecules 34, 5019 (2001).CrossRefGoogle Scholar
  10. 10.
    J. Ruokolainen, R. Makinen, M. Torkelli, et al., Science (Washington, D. C.) 280, 557 (1998).CrossRefGoogle Scholar
  11. 11.
    C.-I. Huang and Y.-C. Lin, Macromol. Rapid Commun. 28, 1634 (2007).CrossRefGoogle Scholar
  12. 12.
    Yu. A. Kriksin, I. Ya. Erukhimovich, P. G. Khalatur, et al., J. Chem. Phys. 128, 244903 (2008).CrossRefGoogle Scholar
  13. 13.
    T. Klymko, A. Subbotin, and G. Ten Brinke, J. Chem. Phys. 129, 114902 (2008).CrossRefGoogle Scholar
  14. 14.
    R. J. Nap, PhD Thesis (Groningen Univ., Groningen, 2003).Google Scholar
  15. 15.
    A. R. Khokhlov and P. G. Khalatur, Chem. Phys. Lett. 461, 58 (2008).CrossRefGoogle Scholar
  16. 16.
    I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).CrossRefGoogle Scholar
  17. 17.
    R. D. Groot and P. B. Warren, J. Chem. Phys. 107, 4423 (1997).CrossRefGoogle Scholar
  18. 18.
    P. Espanol and P. B. Warren, Europhys. Lett. 30, 191 (1995).CrossRefGoogle Scholar
  19. 19.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
  20. 20.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).CrossRefGoogle Scholar
  21. 21.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  22. 22.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • A. A. Glagoleva
    • 1
  • V. V. Vasilevskaya
    • 2
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations