Polymer Science Series A

, 51:1241 | Cite as

Interchain exchange and interdiffusion in blends of poly(ethylene terephthalate) and poly(ethylene naphthalate)

  • L. B. Krentsel’
  • V. V. Makarova
  • Ya. V. Kudryavtsev
  • E. N. Govorun
  • A. D. Litmanovich
  • G. D. Markova
  • V. A. Vasnev
  • V. G. Kulichikhin


The interchain exchange and interdiffusion in blends of poly(ethylene terephthalate) and poly(ethylene naphthalene-2,6-dicarboxylate) are investigated with reprecipitated commercial samples (M η ∼ 104) and samples containing no polycondensation catalyst (M η ∼ 103) synthesized in the course of this study. The kinetics of multiblock copolymer formation and gradual reduction of the mean block length in quasi-homogeneous blends were shown to fit a simple theoretical model of a second-order reaction. The increase of the reaction-rate constants on the transition from commercial samples to synthesized ones revealed a significant role of chain ends in interchain exchange. The detected activation energy of the interchange in the absence of catalysts (97 kJ/mol) was noticeably less than that previously reported for the polymer pair under study (120–170 kJ/mol). The obtained data were applied for analysing the interdiffusion between melts of the same polymers accompanied by the interchain exchange. By means of the microinterference method, the interdiffusion in the synthesized samples was shown to be much faster than that in the reprecipitated commercial samples, a result that may be due to the better compatibility of the initial polyesters as their molecular mass decreased. In later stages of the process in both systems, the interpenetration of components was slower than that predicted by Fick’s law, owing to formation of copolymer species that diminished the thermodynamical factor of mixing.


Contact Zone Polymer Science Series Commercial Sample Interdiffusion Coefficient Ethylene Terephthalate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    A. D. Litmanovich, N. A. Platé, and Y. V. Kudryavtsev, Prog. Polym. Sci. 27, 915 (2002).CrossRefGoogle Scholar
  2. 2.
    Transreactions in Condensation Polymers, Ed. by S. Fakirov (Wiley, Weinheim, 1999).Google Scholar
  3. 3.
    M. S. Stewart, A. J. Cox, and D. M. Naylor, Polymer 34, 4060 (1993).CrossRefGoogle Scholar
  4. 4.
    D. W. Ihm, S. Y. Park, C. G. Chang, et al., J. Polym. Sci., Part A: Polym. Chem. 34, 2841 (1996).CrossRefGoogle Scholar
  5. 5.
    M. Okamoto and T. Kotaka, Polymer 38, 1357 (1997).CrossRefGoogle Scholar
  6. 6.
    M. Guo and W. J. Brittain, Macromolecules 31, 7166 (1998).CrossRefGoogle Scholar
  7. 7.
    A. M. Kenwright, S. K. Peace, R. W. Richards, et al., Polymer 40, 5851 (1999).CrossRefGoogle Scholar
  8. 8.
    S. Collins, A. M. Kenwright, K. Pawson, et al., Macromolecules 33, 2974 (2000).CrossRefGoogle Scholar
  9. 9.
    S. Collins, S. K. Peace, and R. W. Richards, et al., Polymer 42, 7695 (2001).CrossRefGoogle Scholar
  10. 10.
    Y. Shi and S. A. Jabarin, J. Appl. Polym. Sci. 80, 2422 (2001).CrossRefGoogle Scholar
  11. 11.
    L. Alexandrova, A. Cabrera, M. A. Hernandez, et al., Polymer 43, 5397 (2002).CrossRefGoogle Scholar
  12. 12.
    M. Golriz, H. A. Khonakdar, S. H. Jafari, et al., Macromol. Theory Simul. 17, 241 (2008).CrossRefGoogle Scholar
  13. 13.
    V. V. Makarova, N. N. Avdeev, B. Kh. Strelets, et al., Polymer Science, Ser. A 47(7) (2005) [Vysokomol. Soedin., Ser. A 47, 1140 (2005)].Google Scholar
  14. 14.
    A. E. Chalykh, Z. A. Kochnova, and E. S. Zhavoronok, Polymer Science, Ser. A 43(12) (2001) [Vysokomol. Soedin., Ser. A 43, 2147 (2001)].Google Scholar
  15. 15.
    A. E. Chalykh, V. K. Gerasimov, S. N. Rusanova, et al., Polymer Science, Ser. A 48, (2006) [Vysokomol. Soedin., Ser. A 48, 1801 (2006)].Google Scholar
  16. 16.
    S. Berkowitz, J. Appl. Polym. Sci. 29, 4353 (1984).CrossRefGoogle Scholar
  17. 17.
    A. Ya. Malkin and A. E. Chalykh, Diffusion and Viscosity of Polymers. Methods of Measurement (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  18. 18.
    Y. V. Kudryavtsev and E. N. Govorun, e-Polymers, No. 063 (2003).Google Scholar
  19. 19.
    S. Collins, S. K. Peace, R. W. Richards, et al., Macromolecules 33, 2981 (2000).CrossRefGoogle Scholar
  20. 20.
    A. V. Chertovich, D. V. Guseva, Ya. V. Kudryavtsev, and A. D. Litmanovich, Polymer Science, Ser. A 50, (2008) [Vysokomol. Soedin., Ser. A 50, 686 (2008)].Google Scholar
  21. 21.
    Ya. V. Kudryavtsev, E. N. Govorun, and A. D. Litmanovich, Polymer Science, Ser. A 43, (2001) [Vysokomol. Soedin., Ser. A 43, 1893 (2001)].Google Scholar
  22. 22.
    Y. V. Kudryavtsev and E. N. Govorun, Eur. Phys. J., E 21, 263 (2006).CrossRefGoogle Scholar
  23. 23.
    A. Z. Akcasu, Macromol. Theory Simul. 6, 679 (1997).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • L. B. Krentsel’
    • 1
  • V. V. Makarova
    • 1
  • Ya. V. Kudryavtsev
    • 1
  • E. N. Govorun
    • 2
  • A. D. Litmanovich
    • 1
  • G. D. Markova
    • 3
  • V. A. Vasnev
    • 3
  • V. G. Kulichikhin
    • 1
  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia
  3. 3.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations