Polymer Science Series A

, 51:1075 | Cite as

The effect of a low-molecular-mass salt on stoichiometric polyelectrolyte complexes composed of oppositely charged macromolecules with different solvent affinities

  • M. K. Krotova
  • V. V. Vasilevskaya
  • A. R. Khokhlov


The effect of a low-molecular-mass salt on the thermodynamic stability of stoichiometric interpolymer complexes composed of oppositely charged macromolecules with different solvent affinities has been theoretically studied. It has been shown that the dissociation of such complexes with an increase in the concentration of the salt proceeds via several stages. At a low concentration of the salt, complexes retain their structure and dimensions. When a certain critical concentration of the salt n s cr is achieved, the dimensions of the complex increase abruptly. At this concentration, macromolecules involved in the complex begin to separate, and at concentration n s * , they fully move apart but remain soluble owing to the polyelectrolyte effect. Upon a further increase in the concentration of the salt, the polyelectrolyte effect is shielded and the dimensions of macromolecules decrease. The critical concentration of the low-molecular-mass salt, n s cr , increases with an increase in the degree of ionization of macromolecules and a decrease in the affinity of the hydrophilic component for water and diminishes with the degree of polymerization of macromolecules and the degree of hydrophobicity of a polycation. Because of the easy formation of soluble complexes from oppositely charged macromolecules differing in solvent affinities and their high stability in solutions of a low-molecularmass salt, such complexes are promising for wide use in medicine and pharmaceutical practice.


Polymer Science Series Versus Versus Versus Monomer Unit Interpolymer Complex Coil Transition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    R. M. Fuoss and H. Sadek, Science (Washington, D. C.) 110, 552 (1949).CrossRefGoogle Scholar
  2. 2.
    E. A. Bekturov and L. A. Bimendina, Adv. Polym. Sci. 41, 99 (1981).Google Scholar
  3. 3.
    E. Tsuchida and K. Abe, Adv. Polym. Sci. 45, 1 (1982).CrossRefGoogle Scholar
  4. 4.
    B. Philipp, H. Dautzenberg, K.-J. Linow, et al., Prog. Polym. Sci. 14, 91 (1989).CrossRefGoogle Scholar
  5. 5.
    V. A. Izumrudov, A. B. Zezin, and V. A. Kabanov, Usp. Khim. 60, 1570 (1991).Google Scholar
  6. 6.
    V. A. Kabanov, in Macromolecular Complexes in Chemistry and Biology, Ed. by P. Dubin, J. Bock, R. M. Davies, D. N. Schulz, and C. Thies (Springler, Berlin, 1994), p. 151.Google Scholar
  7. 7.
    M. W. Hsiang and R. D. Cole, Proc. Natl. Acad. Sci. U. S. A. 74, 4852 (1977).CrossRefGoogle Scholar
  8. 8.
    J.-P. Behr, Bioconjugate Chem. 5, 382 (1994).CrossRefGoogle Scholar
  9. 9.
    A. V. Kabanov and V. A. Kabanov, Bioconjugate Chem. 6, 7 (1995).CrossRefGoogle Scholar
  10. 10.
    A. Harada and K. Kataoka, Macromolecules 28, 5294 (1995).CrossRefGoogle Scholar
  11. 11.
    A. Harada and K. Kataoka, Science (Washington, D. C.) 238, 65 (1999).CrossRefGoogle Scholar
  12. 12.
    A. V. Kabanov, S. V. Vinogradov, Yu. G. Suzdaltseva, and V. Yu. Alakhov, Bioconjugate Chem. 6, 639 (1995).CrossRefGoogle Scholar
  13. 13.
    A. V. Kabanov, V. K. Bronich, V. A. Kabanov, et al., Macromolecules 29, 679 (1996).Google Scholar
  14. 14.
    E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 119, 4945 (2003).CrossRefGoogle Scholar
  15. 15.
    E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 125, 194902 (2006).CrossRefGoogle Scholar
  16. 16.
    M. Castelnovo, Europhys. Lett. 62, 841 (2003).CrossRefGoogle Scholar
  17. 17.
    T. Etrych, L. Leclercq, M. Boustta, and M. Vert, Eur. J. Pharm. Sci. 25, 281 (2005).Google Scholar
  18. 18.
    V. V. Vasilevskaya, L. Leclercq, M. Boustta, et al., Macromolecules 40, 5934 (2007).CrossRefGoogle Scholar
  19. 19.
    V. Yu. Borue and I. Ya. Erukhimovich, Macromolecules 23, 3625 (1990).CrossRefGoogle Scholar
  20. 20.
    V. V. Vasilevskaya and A. R. Khokhlov, Vysokomol. Soedin., Ser. A 28, 316 (1986).Google Scholar
  21. 21.
    A. R. Khokhlov, S. G. Starodubtzev, and V. V. Vasilevskaya, Adv. Polym. Sci. 109, 123 (1993).Google Scholar
  22. 22.
    V. V. Vasilevskaya, S. G. Starodubtsev, and A. R. Khokhlov, Vysokomol. Soedin., Ser. B 29, 930 (1987).Google Scholar
  23. 23.
    V. V. Vasilevskaya, I. I. Potemkin, and A. R. Khokhlov, Langmuir 15, 7918 (1999).CrossRefGoogle Scholar
  24. 24.
    G. Bokias, V. V. Vasilevskaya, I. Iliopoulos, et al., Macromolecules 33, 9757 (2000).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • M. K. Krotova
    • 1
  • V. V. Vasilevskaya
    • 2
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations