Polymer Science Series A

, Volume 51, Issue 8, pp 957–964 | Cite as

Monte Carlo simulation of a polymer-analogous reaction in a polymer blend

  • A. V. Chertovich
  • D. V. Guseva
  • E. N. Govorun
  • Ya. V. Kudryavtsev
  • A. D. Litmanovich
Theory, Modeling

Abstract

The autocatalytic polymer-analogous reaction A → B in a blend composed of two contacting layers of compatible homopolymers A and B is studied by numerical simulation using the dynamic continuum Monte Carlo method. The evolution of the numerical density of units A and units initially belonged to the chains of homopolymer A is investigated in the course of the reaction and interdiffusion. Local characteristics of the distribution of the homopolymer with respect to its composition and blocks A and B with respect to their length are calculated at different times. The dispersions of the above distributions are appreciably higher than the corresponding dispersion of the Bernoullian copolymer of the same average composition, despite the random character of the reaction. This effect can be provided by changes in the composition of the blend on the scale of the reacting chain as well as by the diffusive mixing of the above chains. For the products of the polymer-analogous reaction, the broadening of the compositional distribution is predicted also by the theoretical model, which describes interdiffusion in the reacting system on scales that are markedly greater than the size of a polymer chain.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. A. Platé, A. D. Litmanovich, and O. V. Noah, Macromolecular Reactions. Peculiarities, Theory and Experimental Approaches (Khimiya, Moscow, 1977; Wiley, New York, 1995).Google Scholar
  2. 2.
    S. I. Kuchanov, Methods of Kinetic Calculations in Polymer Chemistry (Khimiya, Moscow, 1978) [in Russian].Google Scholar
  3. 3.
    N. A. Platé, A. D. Litmanovich, and Ya. V. Kudryavtsev, Macromolecular Reactions in Polymer Melts and Blends: Theory and Experiment (Nauka, Moscow, 2008) [in Russian].Google Scholar
  4. 4.
    K. Binder and A. Milchev, J. Comput.-Aided Mater. Des. 9, 33 (2002).CrossRefGoogle Scholar
  5. 5.
    A. Milchev, W. Paul, and K. Binder, J. Chem. Phys. 99, 4786 (1993).CrossRefGoogle Scholar
  6. 6.
    I. Carmesin and K. Kremer, Macromolecules 21, 2819 (1988).CrossRefGoogle Scholar
  7. 7.
    H. Deutsch and R. Dickman, J. Chem. Phys. 93, 8983 (1990).CrossRefGoogle Scholar
  8. 8.
    A. V. Chertovich, D. V. Guseva, Ya. V. Kudryavtsev, and A. D. Litmanovich, Polymer Science, Ser. A 50, 451 (2008) [Vysokomol. Soedin., Ser. A 50, 689 (2008)].CrossRefGoogle Scholar
  9. 9.
    Y. V. Kudryavtsev and E. N. Govorun, Eur. Phys. J., E 21, 263 (2006).CrossRefGoogle Scholar
  10. 10.
    Y. V. Kudryavtsev, A. D. Litmanovich, A. G. Makeev, and S. V. Bogomolov, Macromol. Theory Simul. 8, 161 (1999).CrossRefGoogle Scholar
  11. 11.
    V. V. Yashin and A. C. Balazs, J. Chem. Phys. 121, 2833 (2004).CrossRefGoogle Scholar
  12. 12.
    M. Allen and D. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1987).Google Scholar
  13. 13.
    D. E. Gal’perin, V. A. Ivanov, M. A. Mazo, and A. R. Khokhlov, Polymer Science, Ser. A 47, 61 (2005) [Vysokomol. Soedin., Ser. A 47, 78 (2005)].Google Scholar
  14. 14.
    Ya. V. Kudryavtsev, E. N. Govorun, and A. D. Litmanovich, Polymer Science, Ser. A 43, 1085 (2001) [Vysokomol. Soedin., Ser. A 43, 1893 (2001)].Google Scholar
  15. 15.
    V. Yashin, Ya. Kudryavtsev, E. Govorun, and A. Litmanovich, Macromol. Theory Simul. 6, 247 (1997).CrossRefGoogle Scholar
  16. 16.
    J. D. Murray, Lectures on Nonlinear-Differential-Equation Models in Biology (Clarendon, Oxford, 1977; Mir, Moscow, 1983).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • A. V. Chertovich
    • 1
  • D. V. Guseva
    • 1
  • E. N. Govorun
    • 1
  • Ya. V. Kudryavtsev
    • 2
  • A. D. Litmanovich
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations