Advertisement

Polymer Science Series A

, Volume 51, Issue 5, pp 550–553 | Cite as

Swelling-contraction of sodium polyacrylate hydrogels in media with various pH values

  • G. K. ElyashevichEmail author
  • N. G. Bel’nikevich
  • S. A. Vesnebolotskaya
Polymer Networs

Abstract

The swelling kinetics of sodium polyacrylate gels has been studied in media with different pH values. The pH dependence of the degree of equilibrium swelling shows a maximum at pH 6. The degree of swelling decreases with an increase in the crosslink density, and this dependence follows an S-shaped pattern for all examined gels. When a gel swollen in media with pH 3–13 is dried in air, its contraction is reversible, while in the case of the gel swollen in acidic media at pH < 3, the process is irreversible owing to the replacement of sodium ions with protons.

Keywords

Acrylic Acid Polymer Science Series Crosslinking Agent Crosslink Density Sodium Cation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yu. Kramarenko, O. E. Filippova, and A. R. Khokhlov, Polymer Science, Ser. C 48, 1 (2006) [Vysokomol. Soedin., Ser. C 48, 1216 (2006)].CrossRefGoogle Scholar
  2. 2.
    A. R. Khokhlov, S. G. Starodubtsev, and V. V. Vasilevskaya, Adv. Polym. Sci. 109, 123 (1993).Google Scholar
  3. 3.
    T. V. Budtova, I. E. Suleimenov, and S. Ya. Frenkel’, Zh. Prikl. Khim. (S.-Peterburg) 70, 883 (1997).Google Scholar
  4. 4.
    V. J. Molina, M. R. Gomez-Anton, and I. F. Pierola, J. Phys. Chem., B 111, 2066 (2007).CrossRefGoogle Scholar
  5. 5.
    A. L. Buyanov, L. G. Revel’skaya, G. A. Petropavlovskii, et al., Vysokomol. Soedin., Ser. B 31, 883 (1989).Google Scholar
  6. 6.
    A. L. Buyanov, Yu. P. Kuznetzov, and A. K. Khripunov, J. Appl. Polym. Sci. 80, 1452 (2001).CrossRefGoogle Scholar
  7. 7.
    X. Feng and R. Pelton, Macromolecules 40, 1624 (2007).CrossRefGoogle Scholar
  8. 8.
    T. Tanaka, in Encyclopedia of Polymer Science and Engineering (Wiley, New York, 1987), Vol. 7, p. 514.Google Scholar
  9. 9.
    M. Ilavski, Macromolecules 15, 782 (1982).CrossRefGoogle Scholar
  10. 10.
    S. Hirotsu, J. Chem. Phys., No. 1, 427 (1988).Google Scholar
  11. 11.
    M. Irie, Adv. Polym. Sci. 110, 49 (1993).CrossRefGoogle Scholar
  12. 12.
    T. Ishida, Y. Hasimoto, Y. Iwai, and Y. Arai, Colloid Polym. Sci. 272, 1313 (1994).CrossRefGoogle Scholar
  13. 13.
    F. Horkay, I. Tasaki, and P. Basser, Biomacromolecules 1, 84 (2000).CrossRefGoogle Scholar
  14. 14.
    S. A. Dubrovskii, M. V. Afanas’eva, M. A. Ryzhkin, and K. S. Kazanskii, Vysokomol. Soedin., Ser. A 31, 321 (1989).Google Scholar
  15. 15.
    V. P. Budtov, Physical Chemistry of Polymer Solutions (Khimiya, St. Petersburg, 1992) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2009

Authors and Affiliations

  • G. K. Elyashevich
    • 1
    Email author
  • N. G. Bel’nikevich
    • 1
  • S. A. Vesnebolotskaya
    • 1
  1. 1.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussia

Personalised recommendations