Polymer Science Series A

, Volume 50, Issue 9, pp 1008–1017 | Cite as

Amphiphilic comb macromolecules with different distribution statistics of side-chain grafting sites: Mathematical modeling

  • A. A. Starostina
  • A. A. Klochkov
  • V. V. Vasilevskaya
  • A. R. Khokhlov
Modeling

Abstract

The influence of the distribution statistics of side-chain grafting sites on the conformational properties of amphiphilic comblike macromolecules immersed in a solvent that is poor for the main chain and good for the side chains was studied. It was shown that the coil-globule transition for macromolecules with the protein-like distribution of side-chain grafting sites occurs at higher temperatures, wherein the size of the proteinlike macromolecules is generally smaller than that of the corresponding regular macromolecules. Regardless of distribution statistics of side-chain grafting sites, the coil-globule transition of comb macromolecules passes through the step of the formation of the beads-on-a-string conformation composed of micelle-like beads. The temperature dependence curves of the heat capacity exhibit at least two maximums associated with the coil-globule transition per se and the coalescence of the beads into a single globule. The coil-globule transition temperature is slightly dependent upon the degree of polymerization of the main chain and drops with a decrease in the degree of polymerization of the side chains. It was found that comb macromolecules can form spherical, disklike, or cylindrical globules, depending on the structural parameters.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Block Copolymers in Nanoscience, Ed. by M. Lazzari, G. Liu, and S. Lecommandoux (Wiley-VCH, Weinheim, 2006).Google Scholar
  2. 2.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).CrossRefGoogle Scholar
  3. 3.
    I. M. Okhapkin, A. A. Askadskii, V. A. Markov, et al., Colloid Polym. Sci. 284, 575 (2006).CrossRefGoogle Scholar
  4. 4.
    A. Goldar and J.-L. Sikorav, Eur. Phys. J., E 14, 211 (2004).Google Scholar
  5. 5.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  6. 6.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  7. 7.
    V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 124, 144914 (2006).CrossRefGoogle Scholar
  8. 8.
    V. A. Markov, V. V. Vasilevskaya, P. G. Khalatur, et al., Macromol. Symp. 252, 24 (2007).CrossRefGoogle Scholar
  9. 9.
    V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 49, 89 (2007) [Vysokomol. Soedin., Ser. A 49, 109 (2007)].Google Scholar
  10. 10.
    T. M. Birshtein, O. V. Borisov, E. B. Zhulina, et al., Vysokomol. Soedin., Ser. A 29, 1169 (1987).Google Scholar
  11. 11.
    Y. Rouault and O. V. Borisov, Macromolecules 29, 2605 (1996).CrossRefGoogle Scholar
  12. 12.
    G. H. Fredrickson, Macromolecules 26, 2825 (1993).CrossRefGoogle Scholar
  13. 13.
    A. Subbotin, M. Saariaho, O. Ikkala, and G. Ten Brinke, Macromolecules 33, 3447 (2000).CrossRefGoogle Scholar
  14. 14.
    M. Saariaho, A. Subbotin, I. Szleifer, et al., Macromolecules 32, 4439 (1999).CrossRefGoogle Scholar
  15. 15.
    V. V. Vasilevskaya, L. A. Gusev, A. R. Khokhlov, et al., Macromolecules 34, 5019 (2001).CrossRefGoogle Scholar
  16. 16.
    H. Kosonen, S. Valkama, J. Ruokolainen, et al., Eur. Phys. J., E 10, 69 (2003).Google Scholar
  17. 17.
    E. Yu. Kramarenko, O. S. Pevnaya, and A. R. Khokhlov, J. Chem. Phys. 122, 084902 (2005).CrossRefGoogle Scholar
  18. 18.
    O. V. Borisov and E. B. Zhulina, Macromolecules 38, 2506 (2005).CrossRefGoogle Scholar
  19. 19.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006).Google Scholar
  20. 20.
    J. Virtanen, C. Baron, and H. Tenhu, Macromolecules 33, 336 (2000).CrossRefGoogle Scholar
  21. 21.
    J. Virtanen and H. Tenhu, Macromolecules 33, 5970 (2000).CrossRefGoogle Scholar
  22. 22.
    E. N. Govorun, V. A. Ivanov, A. R. Khokhlov, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 64, 040903 (2001).CrossRefGoogle Scholar
  23. 23.
    V. I. Lozinskii, I. A. Simenel, E. A. Kurskaya, et al., Dokl. Akad. Nauk 375, 273 (2000).Google Scholar
  24. 24.
    V. I. Lozinsky, I. A. Simenel, V. K. Kulakova, et al., Macromolecules 36, 7308 (2003).CrossRefGoogle Scholar
  25. 25.
    M. H. Siu, H. Y. Liu, X. X. Zhu, and C. Wu, Macromolecules 36, 2103 (2003).CrossRefGoogle Scholar
  26. 26.
    M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids (Clarendon, Oxford, 1990).Google Scholar
  27. 27.
    H. C. Andersen, J. Comput. Phys. 52, 24 (1983).CrossRefGoogle Scholar
  28. 28.
    P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2050 (1980).Google Scholar
  29. 29.
    P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2226 (1980).Google Scholar
  30. 30.
    A. R. Khokhlov and P. G. Khalatur, Phys. Rev. Lett. 82, 3456 (1999).CrossRefGoogle Scholar
  31. 31.
    J. M. P. Van den Oever, F. A. M. Leermakers, G. J. Fleer, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 65, 041708 (2002).CrossRefGoogle Scholar
  32. 32.
    E. N. Govorun, A. R. Khokhlov, and A. N. Semenov, Eur. Phys. J., E 12, 255 (2003).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. A. Starostina
    • 1
  • A. A. Klochkov
    • 2
  • V. V. Vasilevskaya
    • 2
  • A. R. Khokhlov
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations