Polymer Science Series A

, Volume 50, Issue 8, pp 854–864 | Cite as

Macromolecules in a blend of poor and amphiphilic solvents

Solutions

Abstract

The globular state of the homopolymer macromolecule in a blend composed of a poor solvent and an amphiphilic solvent (substrate), whose molecules tend to be aligned with the solvent concentration gradient in the inhomogeneity region, was theoretically studied. The size of a homogeneous globule and the substrate concentration in its volume were calculated in terms of a bulk approximation. After the transition of the macromolecule from the coil to the globule state, its volume first decreases with a decrease in temperature and then begins to grow due to substrate molecules penetrating the globule. The substrate concentration in the globule insignificantly exceeds that outside the globule at identical second virial coefficients of interaction between monomer units and between substrate molecules. The expression for the free energy functional depending on the volume fractions of the components and on the orientation of substrate molecules was examined in the ground-state approximation. The orientation effect leads to narrowing of the surface layer and to a decrease in the surface tension of the homogeneous globule, thereby increasing its stability with respect to the transition to the unfolded-coil state.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Shultz and P. J. Flory, J. Polym. Sci. 15, 231 (1955).CrossRefGoogle Scholar
  2. 2.
    B. E. Read, Trans. Faraday Soc. 56, 382 (1960).CrossRefGoogle Scholar
  3. 3.
    J. Pouchly, A. Zivny, and K. Solc, J. Polym. Sci., Part C 23, 245 (1968).Google Scholar
  4. 4.
    S. G. Chu and P. Munk, Macromolecules 11, 879 (1978).CrossRefGoogle Scholar
  5. 5.
    J. Pouchly and A. Zivny, Makromol. Chem. 184, 2081 (1983).CrossRefGoogle Scholar
  6. 6.
    J. E. Figueruelo, B. Celda, and A. Campos, Macromolecules 18, 2504 (1985).CrossRefGoogle Scholar
  7. 7.
    R. M. Masegosa, M. G. Prolongo, and A. Horta, Macromolecules 19, 1478 (1986).CrossRefGoogle Scholar
  8. 8.
    J. Pouchly and A. Zivny, Makromol. Chem. 186, 37 (1985).CrossRefGoogle Scholar
  9. 9.
    J. Pouchly, Pure Appl. Chem. 61, 1085 (1989).CrossRefGoogle Scholar
  10. 10.
    S. I. Kuchanov and S. Russo, Macromolecules 30, 4511 (1997).CrossRefGoogle Scholar
  11. 11.
    H. J. Harwood, Makromol. Chem., Macromol. Symp. 10, 331 (1987).CrossRefGoogle Scholar
  12. 12.
    K. Y. Park, E. R. Santee, and H. J. Harwood, Eur. Polym. J. 25, 651 (1989).CrossRefGoogle Scholar
  13. 13.
    S. Toppet, M. Slinckx, and G. Smets, J. Polym. Sci., Part A: Polym. Chem. 13, 1879 (1975).Google Scholar
  14. 14.
    B. Klumperman and P. G. Brown, Macromolecules 27, 6100 (1994).CrossRefGoogle Scholar
  15. 15.
    Yu. D. Semchikov, T. E. Knyazeva, L. A. Smirnova, et al., Vysokomol. Soedin., Ser. B 23, 483 (1981).Google Scholar
  16. 16.
    L. A. Smirnova, Yu. D. Semchikov, N. A. Kopilova, et al., Dokl. Akad. Nauk SSSR 317, 410 (1991).Google Scholar
  17. 17.
    Yu. D. Semchikov, L. A. Smirnova, N. A. Kopylova, and T. G. Sveshnikova, Polymer Science, Ser. B 37, 128 (1995) [Vysokomol. Soedin., Ser. B 37, 542 (1995)].Google Scholar
  18. 18.
    E. Hecht and H. Hoffmann, Langmuir 10, 86 (1994).CrossRefGoogle Scholar
  19. 19.
    B. Nandan, C. Lee, H. Chen, and W. Chen, Macromolecules 38, 10117 (2005).CrossRefGoogle Scholar
  20. 20.
    S. Sharma, H. Kunieda, J. Esquena, and C. Abreu, J. Colloid Interface Sci. 299, 297 (2006).CrossRefGoogle Scholar
  21. 21.
    S. Xing and G. Zhao, e-Polymers, No. 018 (2007).Google Scholar
  22. 22.
    H. Hoffmann, C. Thunig, P. Schmiedel, and U. Munkert, Langmuir 10, 3972 (1994).CrossRefGoogle Scholar
  23. 23.
    J. Oberdisse, C. Couve, J. Appell, et al., Langmuir 12, 1212 (1996).CrossRefGoogle Scholar
  24. 24.
    I. W. Hamley, Introduction to Soft Matter: Polymers, Colloids, Amphiphiles, Liquid Crystals (Wiley, Chichester, 2000).Google Scholar
  25. 25.
    T. Nylander, Y. Samoshina, and B. Lindman, J. Colloid Interface Sci. 123, 105 (2006).Google Scholar
  26. 26.
    A. Diez-Pascual, A. Compostizo, A. Crespo-Colin, et al., J. Colloid Interface Sci. 307, 398 (2007).CrossRefGoogle Scholar
  27. 27.
    E. Radlinska, T. Gulik-Krzywicki, F. Lafuma, et al., Phys. Rev. Lett. 74, 4237 (1995).CrossRefGoogle Scholar
  28. 28.
    M.-F. Ficheux, A.-M. Bellocq, and F. Nallet, Colloids Surf., A 123, 253 (1997).CrossRefGoogle Scholar
  29. 29.
    I. Akiba, H. Masunaga, S. Murata, and K. Sasaki, e-Polymers, No. 036 (2006).Google Scholar
  30. 30.
    J. Brake, A. Mezera, and N. Abbott, Langmuir 19, 6436 (2003).CrossRefGoogle Scholar
  31. 31.
    J. Brake, A. Mezera, and N. Abbott, Langmuir 19, 8629 (2003).CrossRefGoogle Scholar
  32. 32.
    P. G. de Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).CrossRefGoogle Scholar
  33. 33.
    J. N. Israelachvili, Intermolecular and Surface Forces (Academic, London, 1991).Google Scholar
  34. 34.
    R. Lipowsky, Nature (London) 349, 475 (1991).CrossRefGoogle Scholar
  35. 35.
    M.-F. Ficheux, L. Bonakdar, F. Lead-Caideron, and J. Bibette, Langmuir 14, 2702 (1997).CrossRefGoogle Scholar
  36. 36.
    D. Acharya, S. Sharma, C. Rodrigues-Abreu, and K. Aramaki, J. Phys. Chem., B 110, 20224 (2006).Google Scholar
  37. 37.
    A. S. Ushakova, E. N. Govorun, and A. R. Khokhlov, J. Phys.: Condens. Matter 18, 915 (2006).Google Scholar
  38. 38.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  39. 39.
    M. V. Vol’kenshtein, Molecular Biophysics (Nauka, Moscow, 1975) [in Russian].Google Scholar
  40. 40.
    L. Nio, K.-C. Chang, S. Wilson, et al., Biochemistry 46, 4775 (2007).CrossRefGoogle Scholar
  41. 41.
    I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 55, 2408 (1968).Google Scholar
  42. 42.
    L. Onsager, Ann. N. Y. Acad. Sci. 51, 627 (1949).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • A. S. Ushakova
    • 1
  • E. N. Govorun
    • 1
  • A. R. Khokhlov
    • 1
  1. 1.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations