Polymer Science Series A

, Volume 50, Issue 6, pp 621–629 | Cite as

Conformational properties of rigid-chain amphiphilic macromolecules: The phase diagram

  • V. A. Markov
  • V. V. Vasilevskaya
  • P. G. Khalatur
  • G. ten Brinke
  • A. R. Khokhlov
Structure, Properties


The coil-globule transition in rigid-chain amphiphilic macromolecules was studied by means of computer simulation, and the phase diagrams for such molecules in the solvent quality-persistence length coordinates were constructed. It was shown that the type of phase diagram depends to a substantial extent on the degree of polymerization of a macromolecule. Relatively short amphiphilic macromolecules in the poor-solvent region always form a spherical globule, with the transition to this globule involving one or two intermediate conformations. These are the disk globule if the Kuhn segment is relatively large and the string of spherical micelles or the disk globule in the case of relative flexible chains. The phase diagram of a long rodlike amphiphilic chain turned out to be even more complex. Namely, three characteristic regions were distinguished in the region of a poor solvent, depending on the chain rigidity: the region of a cylindrical globule without certain order in the main chain, the region of the cylindrical globule with blobs having the collagen ordering of the chain, and the region of coexistence of collagen-like and toroidal globules. In the intermediate transitional region, not only conformations of strings of spherical micelle beads but also the necklace conformations in which the polymer chain in each bead has collagen ordering can occur in this case.


Macromolecule Polymer Science Series Conformational Property Solvent Quality Kuhn Segment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    I. M. Lifshitz, A. Y. Grosberg, and A. R. Khokhlov, Rev. Mod. Phys. 50, 683 (1978).CrossRefGoogle Scholar
  2. 2.
    A. Yu. Grosberg, Biofizika 24, 32 (1979).Google Scholar
  3. 3.
    V. V. Vasilevskaya, A. R. Khokhlov, S. Kidoaki, and K. Yoshikawa, Biopolymers 41 (5), 51 (1997).CrossRefGoogle Scholar
  4. 4.
    V. A. Ivanov, W. Paul, and K. Binder, J. Chem. Phys. 109, 5659 (1998).CrossRefGoogle Scholar
  5. 5.
    V. A. Ivanov, M. R. Stukan, V. V. Vasilevskaya, et al., Macromol. Theory Simul. 9, 488 (2000).CrossRefGoogle Scholar
  6. 6.
    M. R. Stukan, V. A. Ivanov, A. Y. Grosberg, et al., J. Chem. Phys. 118, 3392 (2003).CrossRefGoogle Scholar
  7. 7.
    H. Noguchi and K. Yoshikawa, Chem. Phys. Lett. 278, 184 (1997).CrossRefGoogle Scholar
  8. 8.
    H. Noguchi and K. Yoshikawa, J. Chem. Phys. 109, 5070 (1998).CrossRefGoogle Scholar
  9. 9.
    Y. A. Kuznetsov, E. G. Timoshenko, and K. A. Dawson, J. Chem. Phys. 105, 7116 (1996).CrossRefGoogle Scholar
  10. 10.
    J. Ubbink and T. Odijk, Europhys. Lett. 33, 353 (1996).CrossRefGoogle Scholar
  11. 11.
    J. Ubbink and T. Odijk, Biophys. J. 68, 54 (1995).CrossRefGoogle Scholar
  12. 12.
    I. R. Cooke and D. R. Williams, Physica A (Amsterdam) 339, 45 (2004).CrossRefGoogle Scholar
  13. 13.
    M. J. Stevens, Biophys. J. 80, 130 (2001).CrossRefGoogle Scholar
  14. 14.
    L. C. Cosule and J. A. Schelmann, Nature (London) 259, 333 (1976).CrossRefGoogle Scholar
  15. 15.
    Yu. M. Evdokimov, A. L. Platonov, A. S. Tikhonenko, and Ya. M. Varshavsky, FEBS Lett. 23, 180 (1972).CrossRefGoogle Scholar
  16. 16.
    S. Klimenko, T. Tikhonenko, and V. Andreev, J. Mol. Biol. 23, 523 (1967).CrossRefGoogle Scholar
  17. 17.
    V. A. Bloomfield, Curr. Opin. Struct. Biol. 6, 334 (1996).CrossRefGoogle Scholar
  18. 18.
    M. Cerritelli, N. Cheng, A. Rosenberg, et al., Cell 91, 271 (1997).CrossRefGoogle Scholar
  19. 19.
    N. V. Hud, Biophys. J. 69, 1355 (1995).CrossRefGoogle Scholar
  20. 20.
    N. V. Hud and K. H. Downing, Proc. Natl. Acad. Sci. U. S. A. 98, 14925 (2001).CrossRefGoogle Scholar
  21. 21.
    K. Marx and G. Ruben, J. Biomol. Struct. Dyn. 4, 23 (1986).CrossRefGoogle Scholar
  22. 22.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2005).CrossRefGoogle Scholar
  23. 23.
    I. M. Okhapkin, A. A. Askadskii, V. A. Markov, et al., Colloid Polym. Sci. 284, 575 (2006).CrossRefGoogle Scholar
  24. 24.
    A. Goldar and J. L. Sikorav, Eur. Phys. J., E 14, 211 (2004).CrossRefGoogle Scholar
  25. 25.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).CrossRefGoogle Scholar
  26. 26.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  27. 27.
    V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 1, 124 (2006).Google Scholar
  28. 28.
    V. A. Ermilov, V. V. Vasilevskaya, and A. R. Khokhlov, Polymer Science, Ser. A 49, 89 (2007) [Vysokomol. Soedin., Ser. A 49, 109 (2007)].CrossRefGoogle Scholar
  29. 29.
    M. P. Allen and D. Tildesley, Computer Simulations of Liquids (Clarendon, Oxford, 1990).Google Scholar
  30. 30.
    H. C. Andersen, J. Comput. Phys. 52, 24 (1983).CrossRefGoogle Scholar
  31. 31.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; American Institute of Physics, Ithaca, 1994).Google Scholar
  32. 32.
    P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2050 (1980).Google Scholar
  33. 33.
    P. G. Khalatur, Vysokomol. Soedin., Ser. A 22, 2226 (1980).Google Scholar
  34. 34.
    M. M. Hingorani and M. O’Donnell, Nature Rev. Mol. Cell Biol. 1, 22 (2000).CrossRefGoogle Scholar
  35. 35.
    M. M. Hingorani and M. O’Donnell, Curr. Biol. 8, 83 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • V. A. Markov
    • 1
    • 3
  • V. V. Vasilevskaya
    • 2
  • P. G. Khalatur
    • 2
  • G. ten Brinke
    • 3
  • A. R. Khokhlov
    • 1
    • 2
  1. 1.Faculty of PhysicsMoscow State UniversityLeninskie gory, MoscowRussia
  2. 2.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  3. 3.Department of Polymer Chemistry, Zernike Institute for Advanced MaterialsUniversity of GroningenGroningenNetherlands

Personalised recommendations