Polymer Science Series A

, Volume 50, Issue 3, pp 309–321 | Cite as

Applicability of the critical chromatography concept to proteomics problems: Experimental study of the dependence of peptide retention time on the sequence of amino acids in the chain

  • I. A. Tarasova
  • A. V. Gorshkov
  • V. V. Evreinov
  • K. Adams
  • R. A. Zubarev
  • M. V. Gorshkov
Structure, Properties

Abstract

Experimental data on the separation of synthetic and natural peptides are presented as treated in terms of the separation model proposed by the authors, which allows for the chain connectivity of amino acid residues and the cooperative character of their interaction with the surface. It was shown that the model accurately predicts the separation of peptides with identical amino acid contents and different sequences of units in the chain. The differences in the sequence may be permutation of amino acid residues and the presence of terminal groups, amino acid isomers, or mirror sequences in the chain. The separation model was used to predict the retention times of peptides prepared via the enzymatic hydrolysis of E. coli proteins and bovine serum albumin with trypsin. It was shown that in general the model accurately explains the array of experimental data on the separation of such peptides, thus being the first successful attempt to relate the chain sequence to the retention volume.

Keywords

Amino Acid Residue Polymer Science Series Retention Volume Separation Model TFAA 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Gorshkov, I. A. Tarasova, V. V. Evreinov, and M. V. Gorshkov, Polymer Science, Ser. B 49, 93 (2007) [Vysokomol. Soedin., Ser. B 49, 732 (2007)].CrossRefGoogle Scholar
  2. 2.
    A. V. Gorshkov, I. A. Tarasova, V. V. Evreinov, et al., Anal. Chem. 78, 7770 (2006).CrossRefGoogle Scholar
  3. 3.
    D. Guo, C. T. Mant, A. K. Taneja, et al., J. Chromatogr. 359, 499 (1986).CrossRefGoogle Scholar
  4. 4.
    D. Guo, C. T. Mant, A. K. Taneja, and R. Hodges, J. Chromatogr. 359, 519 (1986).CrossRefGoogle Scholar
  5. 5.
    C. T. Mant, L. T. W. Burke, J. A. Black, and R. Hodges, J. Chromatogr. 458, 193 (1988).CrossRefGoogle Scholar
  6. 6.
    C. T. Mant, L. T. W. Burke, N. E. Zhou, et al., J. Chromatogr. 485, 365 (1990).CrossRefGoogle Scholar
  7. 7.
    O. V. Krokhin, R. Craig, V. Spicer, et al., Mol. Cell. Proteomics 3, 908 (2004).CrossRefGoogle Scholar
  8. 8.
    S. P. Obukhov, Zh. Eksp. Teor. Fiz. 93, 1973 (1987).Google Scholar
  9. 9.
    B. Spengler, J. Am. Soc. Mass Spectrom. 15, 703 (2004).CrossRefGoogle Scholar
  10. 10.
    A. G. Marshall and F. R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectrometry: A User’s Handbook (Elsevier, Amsterdam, 1990).Google Scholar
  11. 11.
    M. L. Nielsen, M. M. Savitski, and R. A. Zubarev, Mol. Cell. Proteomics 4, 835 (2005).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2008

Authors and Affiliations

  • I. A. Tarasova
    • 1
  • A. V. Gorshkov
    • 2
  • V. V. Evreinov
    • 2
  • K. Adams
    • 3
  • R. A. Zubarev
    • 3
  • M. V. Gorshkov
    • 1
  1. 1.Institute of Energy Problems of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  2. 2.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussia
  3. 3.Laboratory for Biological and Medical Mass Spectrometry, Biological and Medical CenterUppsala UniversityUppsalaSweden

Personalised recommendations