Polymer Science Series A

, Volume 49, Issue 11, pp 1210–1217

New information concerning spontaneous elongation of acetate fibers

Structure, Properties

Abstract

The ability of acetate fibers to experience spontaneous changes in their linear dimensions under the action of vapors of aprotic, amphiprotic, and protic solvents, which are widely used in scientific studies and engineering practice, has been investigated. In the vapor phase of solvents that are able to produce the lyotropic LC phase in cellulose derivatives, the phenomenon of spontaneous elongation of fibers has been discovered. This phenomenon has been observed for both cellulose diacetate and triacetate yarns, and their elongation can achieve ∼ 120–180%. In some systems, one can observe the reverse process that represents a spontaneous contraction of the sample after its self-elongation in solvent vapor. To study the above phenomena, a well-known system based on cellulose acetate and nitromethane is considered to be a reference system. The phenomenon of spontaneous elongation is proposed for use as a test for estimating the ability of the (cellulose ether)-solvent system to experience LC ordering.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. G. Majury and H. J. Wellard, in Proceedings of International Symposium on Macromolecular Chemistry, Rome, 1954, p. 354.Google Scholar
  2. 2.
    P. J. Flory, Proc. R. Soc. London, A 234,60, 73 (1956).Google Scholar
  3. 3.
    N. G. Bel’nikevich, L. S. Bolotnikova, E. S. Edilyan, et al., Vysokomol. Soedin., Ser. B 18, 485 (1976).Google Scholar
  4. 4.
    N. G. Bel’nikevich, Yu. V. Brestkin, V. N. Volosatov, and S. Ya. Frenkel’, Vysokomol. Soedin., Ser. A 25, 119 (1983).Google Scholar
  5. 5.
    B. A. Fomenko, L. P. Perepechkin, B. V. Vasil’ev, and N. I. Naimark, Vysokomol. Soedin., Ser. A 11, 1971 (1969).Google Scholar
  6. 6.
    O. A. Fridman, N. I. Naimark, L. N. Malinin, and Yu. I. Vladimirov, Vysokomol. Soedin., Ser. A 24, 512 (1982).Google Scholar
  7. 7.
    A. T. Kalashnik and S. P. Papkov, Vysokomol. Soedin., Ser. A 23, 2302 (1981).Google Scholar
  8. 8.
    G. N. Timofeeva and E. V. Tolkunova, Vysokomol. Soedin., Ser. A 28, 869 (1986).Google Scholar
  9. 9.
    G. N. Timofeeva, I. V. Fedusenko, N. A. Lashek, and A. B. Shipovskaya, Polymer Science, Ser. B 37, 319 (1995) [Vysokomol. Soedin., Ser. B 37, 1093 (1995)].Google Scholar
  10. 10.
    A. B. Shipovskaya and G. N. Timofeeva, Polymer Science, Ser. A 43, 778 (2001) [Vysokomol. Soedin., Ser. A 43, 1237 (2001)].Google Scholar
  11. 11.
    A. B. Shipovskaya and G. N. Timofeeva, Polymer Science, Ser. B 45, 1 (2003) [Vysokomol. Soedin., Ser. B 45, 101 (2003)].Google Scholar
  12. 12.
    A. B. Shipovskaya, S. L. Shmakov, and G. N. Timofeeva, Polymer Science, Ser. A 48, 509 (2006) [Vysokomol. Soedin., Ser. A 48, 801 (2006)].CrossRefGoogle Scholar
  13. 13.
    Sh. A. Azizov and L. A. Sadykova, Vysokomol. Soedin., Ser. B 33, 429 (1991).Google Scholar
  14. 14.
    A. B. Shipovskaya and G. N. Timofeeva, in Structure and Dynamics of Molecular Systems (Kazan. Gos. Univ., Kazan, 2003), No. X, Part 2, p. 222.Google Scholar
  15. 15.
    G. N. Timofeeva, N. V. Protsenko, and I. V. Fedusenko, Khim. Volokna, No. 2, 13 (1989).Google Scholar
  16. 16.
    G. N. Timofeeva, E. S. Sveshnikova, and A. B. Shipovskaya, in Proceedings of International Conference “Composite-2004” (Saratov Gos. Tekh. Univ., Saratov, 2004), p. 336.Google Scholar
  17. 17.
    G. N. Timofeeva, N. V. Protsenko, V. A. Linnik, et al., USSR Inventor’s Certificate No. 1 348 397, Byull. Izobret., No. 40 (1987).Google Scholar
  18. 18.
    A. B. Shipovskaya, N. V. Evseeva, and G. N. Timofeeva, Zh. Prikl. Khim. (S.-Peterburg) 76, 1553 (2003).Google Scholar
  19. 19.
    G. N. Timofeeva and A. B. Shipovskaya, RF Patent No. 2223 971, Byull. Izobret., No. 5 (2004).Google Scholar
  20. 20.
    Ch. Reichardt, Solvents and Solvent Effects in Organic Chemistry (VCH, Weinheim, 1988).Google Scholar
  21. 21.
    S. M. Aharoni, Mol. Cryst. Liq. Cryst. 56, 237 (1980).CrossRefGoogle Scholar
  22. 22.
    V. G. Kulichikhin and L. K. Golova, Khim. Drev., No. 3, 9 (1985).Google Scholar
  23. 23.
    A. Ya. Malkin and E. A. Chalykh, Diffusion and Viscosity of Polymers (Khimiya, Moscow, 1979) [in Russian].Google Scholar
  24. 24.
    B. Yu. Yunusov, O. A. Khanchich, M. V. Shablygin, et al., Vysokomol. Soedin., Ser. B 25, 292 (1983).Google Scholar
  25. 25.
    G. H. Meeten and P. Navard, Polymer 24, 815 (1983).CrossRefGoogle Scholar
  26. 26.
    A. B. Shipovskaya, N. A. Solonina, O. F. Kazmicheva, and G. N. Timofeeva, in Structure and Dynamics of Molecular Systems (Mariisk. Gos. Tekh. Univ., Ioshkar-Ola, 2005), No. XII, Part 2, p. 355 [in Russian].Google Scholar
  27. 27.
    A. B. Shipovskaya, G. F. Mikul’skii, and G. N. Timofeeva, Zh. Prikl. Khim. (S.-Peterburg) 77, 152 (2004).Google Scholar
  28. 28.
    W. R. Moor and J. Schuttlewort, J. Polym. Sci., Part B 132, 89 (1964).Google Scholar
  29. 29.
    A. S. Buntjakov and V. M. Averyanova, J. Polym. Sci., Part C, No. 38, 109 (1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Chernyshevsky State UniversitySaratovRussia
  2. 2.Research Institute of Natural SciencesChernyshevsky State UniversitySaratovRussia

Personalised recommendations