Polymer Science Series A

, Volume 49, Issue 9, pp 1053–1063 | Cite as

Effect of formation of ion pairs on the stability of stoichiometric block ionomer complexes

Theory, Modelling

Abstract

The dependences of the aggregation number and the size of micelles formed as a result of self-assembly in dilute solutions of block ionomers and oppositely charged polyelectrolytes on the degree of ionization of polyions, as well as on solvent quality and polarity, were theoretically analyzed. The micelle core is a polyelectrolyte complex and the corona is formed by hydrophilic nonionic blocks of the block ionomers. To describe the polyelectrolyte complex, a model that allows for the formation of ion pairs between oppositely charged groups on polymer chains was proposed. In terms of the Lifshitz approach to the description of polymer globules, the equilibrium concentration of the polymer in the complex and its surface tension as a function of the degree of ionization of polyelectrolyte chains and solvent polarity were found. It was shown that the proportion of ion pairs is small in a strongly polar complex and the polyelectrolyte complex is formed mainly as a result of attraction due to charge density correlation in the complex. As the solvent polarity increases, the proportion of ion pairs increases. In a solvent with low polarity, the formation of ion pairs that act as physical crosslinks between oppositely charged polyions is a driving force of complexation. With an increase in the number of ion pairs, the surface tension of polyelectrolyte complexes that form the micelle core of block ionomer complexes increases, thus leading to a considerable increase in the size of micelles.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. V. Kabanov, T. K. Bronich, V. A. Kabanov, et al., Macromolecules 29, 6797 (1996).CrossRefGoogle Scholar
  2. 2.
    A. V. Kabanov, S. V. Vinogradov, Yu. G. Suzdaltseva, and V. Yu. Alakhov, Bioconjugate Chem. 6, 639 (1995).CrossRefGoogle Scholar
  3. 3.
    A. Harada and K. Kataoka, Macromolecules 31, 288 (1998).CrossRefGoogle Scholar
  4. 4.
    A. Harada and K. Kataoka, Macromolecules 25, 4249 (1995).Google Scholar
  5. 5.
    J.-F. Gohy, S. K. Varshney, and R. Jerome, Macromolecules 34, 3361 (2001).CrossRefGoogle Scholar
  6. 6.
    T. K. Bronich, T. Cherry, S. V. Vinogradov, et al., Langmuir 14, 6101 (1998).CrossRefGoogle Scholar
  7. 7.
    A. V. Kabanov, T. K. Bronich, V. A. Kabanov, et al., J. Am. Chem. Soc. 120, 9941 (1998).CrossRefGoogle Scholar
  8. 8.
    A. B. Zezin and V. A. Kabanov, Usp. Khim. 51, 1447 (1982).Google Scholar
  9. 9.
    E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 119, 4945 (2003).CrossRefGoogle Scholar
  10. 10.
    V. Yu. Borue and I. Ya. Erukhimovich, Macromolecules 23, 3625 (1990).CrossRefGoogle Scholar
  11. 11.
    I. M. Lifshitz, Zh. Eksp. Teor. Fiz. 55, 2408 (1968).Google Scholar
  12. 12.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989) [in Russian].Google Scholar
  13. 13.
    E. Yu. Kramarenko, A. R. Khokhlov, and P. Reineker, J. Chem. Phys. 125, 194902 (2006).Google Scholar
  14. 14.
    E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Macromol. Theory Simul. 11, 462 (2002).CrossRefGoogle Scholar
  15. 15.
    E. Yu. Kramarenko, I. Ya. Erukhimovich, and A. R. Khokhlov, Polymer Science, Ser. A 46, 974 (2004) [Vysokomol. Soedin., Ser. A 46, 1570 (2004)].Google Scholar
  16. 16.
    E. B. Zhulina and T. M. Birshtein, Vysokomol. Soedin., Ser. A 27, 511 (1985).Google Scholar
  17. 17.
    T. M. Birshtein and E. B. Zhulina, Polymer 30, 170 (1989).CrossRefGoogle Scholar
  18. 18.
    P. J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, New York, 1953).Google Scholar
  19. 19.
    L. D. Landau and E. M. Lifshitz, Statistical Physics (Nauka, Moscow, 1976; Pergamon Press, Oxford, 1980), Vol. V, Part I.Google Scholar
  20. 20.
    A. N. Kudlai and I. Ya. Erukhimovich, Polymer Science, Ser. A 43, 159 (2001) [Vysokomol. Soedin., Ser. A 43, 282 (2001)].Google Scholar
  21. 21.
    A. V. Ermoshkin and I. Ya. Erukhimovich, Polymer Science, Ser. A 42, 84 (2000) [Vysokomol. Soedin., Ser. A 42, 102 (2000)].Google Scholar
  22. 22.
    A. N. Semenov and M. Rubinstein, Macromolecules 31, 1373 (1998).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  1. 1.Faculty of PhysicsMoscow State UniversityLeninskie gory, MoscowRussia

Personalised recommendations