Polymer Science Series A

, Volume 49, Issue 1, pp 89–96 | Cite as

Secondary globular structure of copolymers containing amphiphilic and hydrophilic units: Computer simulation analysis

  • V. A. Ermilov
  • V. V. Vasilevskaya
  • A. R. Khokhlov
Modeling

Abstract

The coil-globule transition in copolymers composed of amphiphilic and hydrophilic monomer units has been studied by the computer simulation technique. It has been shown that the structure of globules formed in such systems substantially depends on the rate at which the solvent quality worsens. The globule resulting from slow cooling is cylindrical, and its core contains a large amount of hydrophilic groups. The globule formed upon rapid cooling takes the helical conformation, in which all hydrophilic groups are displaced to the periphery. One helix turn of such globules contains 3–5 units. In both cases, the backbone of the polymer chain forms a typical zigzag-shaped structure with an average angle between neighboring bond vectors of about 60°. This fact implies that globules of copolymers consisting of amphiphilic and hydrophilic units comprise secondary structure components.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. V. Vol’kenshtein, Biophysics (Nauka, Moscow, 1981) [in Russian].Google Scholar
  2. 2.
    D. L. Nelson and M. M. Cox, Lehninger Principles of Biochemistry (Worth, New York, 2000).Google Scholar
  3. 3.
    A. V. Finkel’shtein and O. B. Ptitsyn, Protein Chemistry (Knizhnyi Dom “Universitet,” Moscow, 2002) [in Russian].Google Scholar
  4. 4.
    A. R. Khokhlov and P. G. Khalatur, Physica A (Amsterdam) 249, 253 (1998).Google Scholar
  5. 5.
    A. R. Khokhlov and P. G. Khalatur, Phys. Rev. Lett. 82, 3456 (1999).CrossRefGoogle Scholar
  6. 6.
    E. N. Govorun, V. A. Ivanov, A. R. Khokhlov, et al., Phys. Rev. E: Stat. Phys., Plasmas, Fluids, Relat. Interdiscip. Top. 64, 040903 (2001).Google Scholar
  7. 7.
    L. V. Gusev, V. V. Vasilevskaya, V. Ju. Makeev, et al., Macromol. Theory Simul. 12, 604 (2003).CrossRefGoogle Scholar
  8. 8.
    V. V. Vasilevskaya, P. G. Khalatur, and A. R. Khokhlov, Macromolecules 36, 10103 (2003).Google Scholar
  9. 9.
    V. V. Vasilevskaya, A. A. Klochkov, A. A. Lazutin, et al., Macromolecules 37, 5444 (2004).CrossRefGoogle Scholar
  10. 10.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 117 (2006).CrossRefGoogle Scholar
  11. 11.
    I. M. Okhapkin, E. E. Makhaeva, and A. R. Khokhlov, Colloid Polym. Sci. 284, 575 (2006).CrossRefGoogle Scholar
  12. 12.
    V. V. Vasilevskaya, V. A. Markov, P. G. Khalatur, and A. R. Khokhlov, J. Chem. Phys. 124, 144914 (2006).Google Scholar
  13. 13.
    H. C. Andersen, J. Comput. Phys. 52, 24 (1983).CrossRefGoogle Scholar
  14. 14.
    D. G. Frolov, Course of Colloid Chemistry (Khimiya, Moscow, 1989) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2007

Authors and Affiliations

  • V. A. Ermilov
    • 1
  • V. V. Vasilevskaya
    • 1
  • A. R. Khokhlov
    • 1
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia

Personalised recommendations