Polymer Science Series A

, Volume 48, Issue 3, pp 314–324 | Cite as

Acoustic relaxation and ionic conductivity of oxyethylene aliphatic polyionenes

  • M. V. Burmistr
  • K. M. Sukhoy
  • V. V. Shilov
  • V. S. Sperkach
  • P. Pissis
  • G. Polizos
  • Yu. P. Gomza
Structure, Properties


Polyionenes composed of oxyethylene and aliphatic hydrocarbon units were studied by differential scanning calorimetry, wide-and small-angle X-ray scattering, and dielectric spectroscopy. These polymers are characterized by the variation of Tg with the concentration of ionic centers. Polyionenes with short ethylene oxide segments are amorphous; however, as the average number of monomer units in the oxyethylene segments increases to 20, a crystalline structure typical of poly(ethylene oxide) is formed. Oxyethylene-aliphatic polyionenes are microphase-separated systems. Polyionenes from this series are characterized by a high ionic conductivity, which increases with an increase in the concentration of ionic sites—the conductivity at room temperature is 10−5–10−4 Ω−1 cm−1. By means of acoustic spectroscopy, it was found that the isotherms of the ultrasound absorption (frequency domain) and ultrasound speed had two dispersion regions. The mechanism of the dispersions was associated with the softening of the quasi-lattice produced by cationic sites and with the motion of chain segments connecting these sites, The speed of sound in polyionene is abnormally high (1800–2100 m/s) for polymers, a result which is due to a high level of intermolecular interactions.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    K. M. Abraham, Electrochim. Acta 38, 1233 (1993).CrossRefGoogle Scholar
  2. 2.
    P. G. Drude, Solid State Electrochemistry (Cambridge Univ. Press, New York, 1995).Google Scholar
  3. 3.
    F. M. Gray, Polymer Electrolytes, RSC Materials Monographs (The Royal Society of Chemistry, Information Services, London, 1997).Google Scholar
  4. 4.
    A. Rembaum, W. Baumgartner, and A. Eisenberg, J. Polym. Sci., Part A-1 36, 159 (1968).Google Scholar
  5. 5.
    A. Rembaum, J. Macromol. Sci., Chem. 3, 87 (1969).Google Scholar
  6. 6.
    A. Rembaum, H. Rile, and R. Samoano, J. Polym. Sci., Part A-1 8, 457 (1970).Google Scholar
  7. 7.
    H. Noguchi and A. Rembaum, J. Polym. Sci., Part A-1 7, 383 (1969).Google Scholar
  8. 8.
    E. C. Knapick, J. A. Hirsch, and P. Ander, Macromolecules 8, 1015 (1975).Google Scholar
  9. 9.
    M. V. Burmistr, O. E. Degtuarev, and A. S. Mordvintseva, Vopr. Khim. Khim. Tekhnol., No. 74, 102 (1984).Google Scholar
  10. 10.
    Yu. S. Lipatov, M. V. Burmistr, and V. P. Privalko, Dokl. Akad. Nauk SSSR 318, 632 (1991).Google Scholar
  11. 11.
    M. V. Burmistr, N. V. Korneev, and O. E. Degtuarev, Vopr. Khim. Khim. Tekhnol., No. 85, 75 (1987).Google Scholar
  12. 12.
    T. Tsutsui, R. Tanaka, and T. Tanaka, J. Polym. Sci., Part B: Polym. Phys. 13, 2091 (1975).Google Scholar
  13. 13.
    M. V. Burmistr, V. V. Shilov, K. M. Sukhoi, et al., Vysokomol. Soedin., Ser. A 45, 1314 (2003) [Polymer Science, Ser. A 45, 785 (2003)].Google Scholar
  14. 14.
    E. Bortel and A. Kochanowski, Makromol. Chem. 188, 2019 (1987).CrossRefGoogle Scholar
  15. 15.
    W. H. Meyer, Polymer Electrolytes II, Ed. by J. R. MacCallum and C.A. Vincent (Elsevier, London, 1989).Google Scholar
  16. 16.
    L. Dominguez and W. H. Meyer, Solid State Ionics 28/38, 941 (1988).Google Scholar
  17. 17.
    J. J. Rosenberg, A. Benchettara, A. Nouacer, and J. Estienne, Electrochem. Acta 35, 77 (1990).Google Scholar
  18. 18.
    S. Zhang and Q. Sha, Solid State Ionics 59, 179 (1993).CrossRefGoogle Scholar
  19. 19.
    F. H. Hurley and T. P. Wier, J. Electrochem. Soc. 98, 203 (1951).Google Scholar
  20. 20.
    R. J. Gale, B. Gilbert, and R. A. Osteryoung, Inorg. Chem. 17, 2728 (1978).CrossRefGoogle Scholar
  21. 21.
    J. Robinson and R. A. Osteryoung, J. Am. Chem. Soc. 101, 323 (1979).Google Scholar
  22. 22.
    M. Watanabe, S.-I. Yamada, and N. Ogata, Electrochem. Acta 40, 2285 (1995).Google Scholar
  23. 23.
    J. S. Wilkes, J. A. Levisky, R. A. Wilson, and C. L. Hussey, Inorg. Chem. 21, 1263 (1982).Google Scholar
  24. 24.
    A. A. Fannin, D. A. Floreani, L. A. King, et al., J. Phys. Chem. 88, 2614 (1984).Google Scholar
  25. 25.
    M. Watanabe and N. Ogata, Br. Polym. J. 20, 181 (1988).Google Scholar
  26. 26.
    W. H. Meyer, R. R. Rietz, D. Schaefer, and F. Kremer, Electrochem. Acta 37, 1491 (1992).CrossRefGoogle Scholar
  27. 27.
    R. R. Rietz, D. Schaefer, W. H. Meyer, and H. W. Spies, Electrochem. Acta 37, 1657 (1992).CrossRefGoogle Scholar
  28. 28.
    J. Li and I. M. Khan, Makromol. Chem. 192, 3043 (1991).CrossRefGoogle Scholar
  29. 29.
    Yu. S. Lipatov, Vopr. Khim. Khim. Tekhnol., No. 1, 7 (2001).Google Scholar
  30. 30.
    M. Xu, E. M. Eyring, and S. Petrucci, J. Phys. Chem. 99, 14589 (1995).Google Scholar
  31. 31.
    K. M. Sukhoy, Candidate’s Dissertation in Chemistry (Dnepropetrovsk, 2002).Google Scholar
  32. 32.
    H. T. Clark, H. B. Gillespie, and S. Z. Wiesshaus, J. Am. Chem. Soc. 55, 4571 (1933).Google Scholar
  33. 33.
    Yu. S. Lipatov, V. V. Shilov, Yu. P. Gomza, and N. E. Kruglyak, X-Ray Diffraction Methods for Investigation of Polymer Systems (Naukova Dumka, Kiev, 1982) [in Russian].Google Scholar
  34. 34.
    O. Kratky, I. Pilz, and P. I. Schmidt, J. Colloid Interface Sci. 21, 24 (1966).CrossRefGoogle Scholar
  35. 35.
    C. G. Vonk, FFSAXS Program for the Processing of Small-Angle X-Ray Scattering Data (DSM, Gelen, 1975).Google Scholar
  36. 36.
    C. G. Vonk, J. Appl. Crystallogr. 9, 433 (1976).CrossRefGoogle Scholar
  37. 37.
    A. Kyritsis, P. Pissis, and J. Grammatikakis, J. Polym. Sci., Part B: Polym. Phys. 33, 1737 (1995).CrossRefGoogle Scholar
  38. 38.
    E. R. Neagu, R. M. Neagu, and P. Pissis, in Proceedings of Ninth International Symposium on Electrets, Ed. by Z. Xia and H. Zhang (Piscataway, Shanghai, 1996).Google Scholar
  39. 39.
    R. M. Neagu, E. R. Neagu, N. Bonanos, and P. Pissis, J. Appl. Phys. 88(12), 1 (2000).Google Scholar
  40. 40.
    V. S. Sperkach, Doctoral Dissertation in Mathematics and Physics (Tashkent, 1991).Google Scholar
  41. 41.
    A. A. Chuiko, V. S. Sperkach, V. M. Ogenko, et al., Vysokomol. Soedin., Ser. A 33, 1155 (1991).Google Scholar
  42. 42.
    H. Farber and S. Petrucci, Ultrasonic Absorption Spectrometry, Ed. by R. R. Dogonadze (Elsevier, Amsterdam, 1986).Google Scholar
  43. 43.
    A. Eisenberg, Macromolecules 4, 125 (1971).Google Scholar
  44. 44.
    A. Eisenberg, H. Matsuura, and T. Yokoyama, J. Polym. Sci., Part A-2 9, 2133 (1971).CrossRefGoogle Scholar
  45. 45.
    Polymer Handbook, Ed. by J. Brandrup and E. H. Immergut (Wiley, New York, 1975).Google Scholar
  46. 46.
    J. R. Martin and J. K. Gillham, J. Appl. Polym. Sci. 16, 2091 (1972).CrossRefGoogle Scholar
  47. 47.
    B. Wunderlich, ATHAS Data Bank (Univ. of Tennessee, 1990).Google Scholar
  48. 48.
    F. Kremer, L. Dominguez, W. H. Meyer, and G. Wegner, Polymer 30, 2023 (1989).CrossRefGoogle Scholar
  49. 49.
    J. R. Macdonald, Impedance Spectroscopy (Wiley, New York, 1978).Google Scholar
  50. 50.
    A. E. Woodward, J. M. Crissman, and J. A. Sauer, J. Polym. Sci. 44, 23 (1960).CrossRefGoogle Scholar
  51. 51.
    R. Gerhardt, J. Phys. Chem. Solids 55, 1491 (1995).Google Scholar
  52. 52.
    S. Druger, M. A. Rather, and A. Nitzan, Solid State Ionics 18–19, 106 (1986).Google Scholar
  53. 53.
    C. A. Angell, Solid State Ionics 9–10, 3 (1983).Google Scholar
  54. 54.
    L. M. Torell and C. A. Angell, Br. Polym. J. 20, 173 (1988).Google Scholar
  55. 55.
    R. J. Grant, M. D. Ingram, L. D. S. Turner, and C. A. Vincent, J. Phys. Chem. 82, 2838 (1978).CrossRefGoogle Scholar
  56. 56.
    M. D. Ingram, Curr. Opin. Solid State Mater. Sci. 2, 399 (1997).Google Scholar
  57. 57.
    J. Lamb, Physical Acoustics. Principle and Methods, Ed. by W. P. Mason (Academic, New York, 1965), Vol. II, Part A.Google Scholar
  58. 58.
    S. B. Grigor’ev, Yu. S. Manucharov, and S. A. Manucharova, Vysokomol. Soedin., Ser. B 18, 150 (1986).Google Scholar
  59. 59.
    V. S. Sperkach, Ya. V. Sperkach, and A. L. Stribulevich, Akust. Zh. 41, 1 (1997).Google Scholar
  60. 60.
    V. S. Sperkach, Ya. V. Sperkach, and A. L. Stribulevich, Akust. Zh. 43, 728 (1997).Google Scholar
  61. 61.
    I. Alig, E. Donth, W. Schenk, et al., Polymer 29, 2081 (1988).Google Scholar
  62. 62.
    S. B. Grigor’ev, S. A. Kukorina, Yu. S. Manucharov, and I. G. Mikhailov, Vestn. Leningr. Univ., Ser. 4: Fiz., Khim. 4, 112 (1981).Google Scholar
  63. 63.
    I. Alig, S. B. Grigor’ev, Ju. S. Manucharov, and S. A. Manucharova, Acta Polym. 37, 698 (1986).Google Scholar
  64. 64.
    I. Alig, S. B. Grigor’ev, Ju. S. Manucharov, and S. A. Manucharova, Acta Polym. 37, 733 (1986).Google Scholar
  65. 65.
    A. L. Striboulevich, V. Sperkach, and Ya. Sperkach, Polym. Eng. Sci. 39, 394 (1999).CrossRefGoogle Scholar
  66. 66.
    M. V. Burmistr, A. V. Tugolukov, K. M. Sukhoi, et al., Vopr. Khim. Khim. Tekhnol., No. 3, 32 (2000).Google Scholar
  67. 67.
    M. V. Burmistr, A. V. Tugolukov, K. M. Sukhoy, et al., Mater. Technol. Tools 6(3), 40 (2001).Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • M. V. Burmistr
    • 1
  • K. M. Sukhoy
    • 1
  • V. V. Shilov
    • 2
  • V. S. Sperkach
    • 1
    • 2
    • 3
  • P. Pissis
    • 3
  • G. Polizos
    • 3
  • Yu. P. Gomza
    • 2
  1. 1.Ukrainian State University of Chemical TechnologyDnepropetrovskUkraine
  2. 2.Institute of Macromolecular ChemistryNational Academy of Sciences of UkraineKievUkraine
  3. 3.Department of PhysicsNational Technical University of Athens, Zografou CampusAthensGreece

Personalised recommendations