Polymer Science Series A

, Volume 48, Issue 2, pp 138–145 | Cite as

Effect of a homogeneous magnetic field on the mechanical behavior of soft magnetic elastomers under compression

  • S. S. Abramchuk
  • D. A. Grishin
  • E. Yu. Kramarenko
  • G. V. Stepanov
  • A. R. Khokhlov
Structure, Properties

Abstract

The mechanical properties of new magnetic composite materials were studied. The above materials represent rubbery silicon matrices filled with magnetic microparticles of metallic iron or magnetite. In homogeneous magnetic fields with an intensity of up to 0.4 T, the shear modulus of the composites was abnormally high (up to 10 000%). The variation of elastic properties of new materials on the type and volume content of the magnetic filler was investigated. In the presence of a sufficiently strong magnetic field, the above composites were shown to behave as elastoplastic materials with strengthening.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. T. Horvath and D. J. Klingenberg, Int. J. Mod. Phys. B 16, 2690 (2002).Google Scholar
  2. 2.
    Tianhao Ji and Hongjun Shi, J. Magn. Magn. Mater. 212, 189 (2000).CrossRefGoogle Scholar
  3. 3.
    C. Gruttner and S. Rudershausen, J. Magn. Magn. Mater. 225, 1 (2001).Google Scholar
  4. 4.
    S. Bednarek, Mod. Phys. Lett. B 13, 865 (1999).Google Scholar
  5. 5.
    M. X. Patience, G. Filipcsei, and M. Zrinyi, Macromolecules 33, 1716 (2000).Google Scholar
  6. 6.
    D. Szabo, G. Szeghy, and M. Zrinyi, Macromolecules 31, 6541 (1998).CrossRefGoogle Scholar
  7. 7.
    D. Szabo and M. Zrinyi, Int. J. Mod. Phys. 16, 2616 (2002).Google Scholar
  8. 8.
    J. M. Ginder, S. M. Clark, and W. F. Schlotter, Int. J. Mod. Phys. B 16, 2412 (2002).Google Scholar
  9. 9.
    C. Bellan and G. Bossig, Int. J. Mod. Phys. B 16, 2447 (2002).Google Scholar
  10. 10.
    L. Nikitin, L. Mironova, G. Stepanov, and A. Samus’, J. Polym. Sci., Part A: Polym. Chem. 43, 443 (2001).Google Scholar
  11. 11.
    L. Nikitin, L. Mironova, G. Stepanov, and A. Samus’, J. Magn. Magn. Mater. 258–259, 468 (2003).Google Scholar
  12. 12.
    S. Bednarek, J. Magn. Magn. Mater. 166, 91 (1997).CrossRefGoogle Scholar
  13. 13.
    J. D. Carlson and M. R. Jolly, Mechanotronics 10(7), 55 (2000).Google Scholar
  14. 14.
    P. P. Phule, Int. J. Mod. Phys. 13, 2019 (1999).Google Scholar
  15. 15.
    Y. Rong, R. Tao, and X. Tang, Int. J. Adv. Manuf. Technol. 16, 822 (2000).CrossRefGoogle Scholar
  16. 16.
    T. M. Simon, F. Retich, and M. R. Jolly, Math. Comput. Model. 33, 273 (2001).CrossRefGoogle Scholar
  17. 17.
    J. Popplewell and R. E. Rosenweig, J. Magn. Magn. Mater. 149, 53 (1995).Google Scholar
  18. 18.
    S. A. Demchuk and V. A. Kuz’min, J. Eng. Phys. Thermophys. 75, 396 (2002).CrossRefGoogle Scholar
  19. 19.
    A. Yu. Grosberg and A. R. Khokhlov, Statistical Physics of Macromolecules (Nauka, Moscow, 1989; American Institute of Physics, Ithaca, 1994).Google Scholar
  20. 20.
    L. M. Kachanov, Fundamentals of the Plasticity Theory (Nauka, Moscow, 1969) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Inc. 2006

Authors and Affiliations

  • S. S. Abramchuk
    • 1
  • D. A. Grishin
    • 2
  • E. Yu. Kramarenko
    • 3
  • G. V. Stepanov
    • 3
  • A. R. Khokhlov
    • 3
  1. 1.Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityLeninskie gory, MoscowRussia
  3. 3.State Scientific Center of the Russian FederationInstitute of Chemistry and Technology of Organoelement CompoundsMoscowRussia

Personalised recommendations