Advertisement

Petroleum Chemistry

, Volume 59, Supplement 1, pp S30–S36 | Cite as

Distribution of Vanadium and Nickel in the Case of Two-Step Solvent Fractionation of Asphaltenes of Heavy Oils

  • S. G. YakubovaEmail author
  • G. R. Abilova
  • E. G. Tazeeva
  • Yu. Yu. Borisova
  • D. V. Milordov
  • N. A. Mironov
  • M. R. Yakubov
Article
  • 5 Downloads

Abstract

General features of the distribution of vanadium and nickel in the products of two-step solvent fractionation of asphaltenes have been using the exampley of heavy crude oils from various fields of the Volga–Urals oil-and-gas basin (Russia). At the first step, during the treatment of a solution of asphaltenes in toluene with an excess of n-hexane, vanadium and nickel are predominantly concentrated in the insoluble fraction that is characterized by increased molecular weight, aromaticity, and degree of condensation with a decreased fraction of heteroatomic sulfur- and oxygen-containing structures. At the second step, during the treatment of the solution of asphaltene fractions in toluene with an excess of dimethylformamide, characteristic features of the distribution of vanadium and nickel in the obtained fractions have been revealed for heavy oils from different fields. As a result, differences in the concentration of metal complexes of vanadyl with asphaltenes have been determined for the heavy oils from Carboniferous and Permian productive sediments.

Keywords:

heavy petroleum asphaltenes vanadium nickel extraction N,N-dimethylformamide 

Notes

ACKNOWLEDGMENTS

The authors are grateful to the employees of the distributed collective spectral and analytical Center for the Studies of the Structure, Composition, and Properties of Substances and Materials of the Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences” for the performed studies on the determination of the concentration of the metals.

FUNDING

This work was supported by the Russian Science Foundation, agreement no. 19-13-00089.

CONFLICT OF INTEREST

The authors declare no conflict of interest to be disclosed in this paper.

REFERENCES

  1. 1.
    J. Ancheyta, Modeling of Processes and Reactors for Upgrading of Heavy Petroleum (CRC, Boca Raton, 2013).CrossRefGoogle Scholar
  2. 2.
    J. G. Speight, Heavy and Extra-heavy Oil Upgrading Technologies (Elsevier/Gulf Professional Publishing, Oxford, 2013).Google Scholar
  3. 3.
    A. H. Alshareef, A. Scherer, X. Tan, et al., Energy Fuels 25, 2130 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Dehghani, M. Sattarin, H. Bridjanian, and K. H. Mohamadbeigy, Pet. Coal 5, 229 (2009).Google Scholar
  5. 5.
    L. C. Castaneda, J. A. D. Munoz, and J. Ancheyta, Catal. Today 220, 248 (2014).CrossRefGoogle Scholar
  6. 6.
    E. Fumoto, A. Matsumura, S. Sato, and T. Takanohashi, Energy Fuels 23, 5308 (2009).CrossRefGoogle Scholar
  7. 7.
    M. R. Yakubov, D. N. Borisov, N. U. Maganov, et al., Neft. Khoz., No. 5, 74 (2016).Google Scholar
  8. 8.
    A. C. Jenifer, P. Sharon, A. Prakash, and P. C. Sande, Energy Fuels 29, 7743 (2015).CrossRefGoogle Scholar
  9. 9.
    Gr. P. Dechaine and M. Gray, Energy Fuels 24, 2795 (2010).CrossRefGoogle Scholar
  10. 10.
    X. Zhao, Ch. Xu, and Q. Shi, Structure and Modeling of Complex Petroleum Mixtures, Ed. by Ch. Xu and Q. Shi (Springer International, Berlin, 2016), p. 182.Google Scholar
  11. 11.
    N. K. Nadirov, A. V. Kotova, V. F. Kam’yanov, et al., New Kazakhstan Oils and Their Use: Metals in Crude Oils (Nauka, Alma-Ata, 1984) [in Russian].Google Scholar
  12. 12.
    V. R. Antipenko, V. N. Melkov, and V. I. Titov, Neftekhimiya 19, 723 (1979).Google Scholar
  13. 13.
    M. R. Yakubov, D. V. Milordov, S. G. Yakubova, et al., Pet. Sci. Technol. 35, 1468 (2017).CrossRefGoogle Scholar
  14. 14.
    M. R. Yakubov, K. O. Sinyashin, G. R. Abilova, et al., Pet. Chem. 57, 849 (2017).CrossRefGoogle Scholar
  15. 15.
    W. R. Biggs, J. C. Fetzer, R. J. Brown, and J. G. Reynolds, Liquid Fuels Technol. 3, 397 (1985).CrossRefGoogle Scholar
  16. 16.
    M. E. Pena, A. Manjarrez, and A. Campero, Fuel Process. Technol. 46, 171 (1996).CrossRefGoogle Scholar
  17. 17.
    H. Liu, Z. Wang, A. Guo, and K. Chen, Pet. Sci. Technol. 33, 203 (2015).CrossRefGoogle Scholar
  18. 18.
    Y.-Y. Gao, B.-X. Shen, and J.-C. Liu, Pet. Sci. Technol. 31, 509 (2013).CrossRefGoogle Scholar
  19. 19.
    M. R. Yakubov, S. G. Yakubova, L. M. Petrova, et al., Neft. Khoz., No. 1, 51 (2007).Google Scholar
  20. 20.
    M. R. Yakubov, D. V. Milordov, S. G. Yakubova, et al., Pet. Sci. Technol. 34, 177 (2016).CrossRefGoogle Scholar
  21. 21.
    V. P. Antipenko, Pet. Chem. 39, 365 (1999).Google Scholar
  22. 22.
    M. F. Ali, H. Perzanowski, A. Bukhari, and A. A. Al-Haji, Energy Fuels 7, 179 (1993).CrossRefGoogle Scholar
  23. 23.
    M. R. Yakubov, D. V. Milordov, S. G. Yakubova, et al., Pet. Chem. 56, 16 (2016).CrossRefGoogle Scholar
  24. 24.
    T. A. Maryutina, O. N. Katasonova, E. Yu. Savonina, and B. Y. Spivakov, J. Anal. Chem. 72, 490 (2017).CrossRefGoogle Scholar
  25. 25.
    G. W. Hodoson, B. Hitchon, K. Tacxjchi, et al., Geochim. Cosmochim. Acta 32, 737 (1968).CrossRefGoogle Scholar
  26. 26.
    A. I. Bogomolov, Modern Oil Investigation Techniques (Nedra, Leningrad, 1984) [in Russian].Google Scholar
  27. 27.
    S. G. Yakubova, G. R. Abilova, E. G. Tazeeva, et al., Pet. Sci. Technol. 36, 1319 (2018).CrossRefGoogle Scholar
  28. 28.
    G. R. Abilova, K. O. Sinyashin, E. G. Tazeeva, et al., Neftegazokhimiya, No. 2, 13 (2017).Google Scholar
  29. 29.
    N. A. Abbakumova, D. N. Borisov, I. M. Zaidullin, et al., Khim. Tekhnol. Topl. Masel, No. 1, 18 (2013).Google Scholar
  30. 30.
    M. R. Yakubov, D. V. Milordov, S. G. Yakubova, et al., Pet. Sci. Technol. 34, 177 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • S. G. Yakubova
    • 1
    Email author
  • G. R. Abilova
    • 1
  • E. G. Tazeeva
    • 1
  • Yu. Yu. Borisova
    • 2
  • D. V. Milordov
    • 1
  • N. A. Mironov
    • 1
  • M. R. Yakubov
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Russian Academy of SciencesKazanRussia
  2. 2.Federal Research Center “Kazan Scientific Center of the Russian Academy of Sciences”KazanRussia

Personalised recommendations