Advertisement

Petroleum Chemistry

, Volume 59, Supplement 1, pp S45–S52 | Cite as

Conversion of Gaseous Hydrocarbons in Cold Electron-Beam Plasma

  • R. G. SharafutdinovEmail author
  • V. O. Konstantinov
  • V. I. Fedoseev
  • V. G. Shchukin
  • S. A. Gorodetskii
Article

Abstract

A new method for plasma-assisted reforming of hydrocarbon gases is briefly described, and the results of oxidative (without the synthesis gas stage) and nonoxidative conversion to new gaseous and liquid products are exemplified. The method is based on the unique property of cold plasma, the dramatic acceleration of chemical processes due to the plasma activation of particles, which makes it possible to enhance reactions in small flow reactors without the use of catalysts.

Keywords:

plasma-assisted reforming of natural gas electron-beam plasma cold plasma generator 

Notes

CONFLICT OF INTERESTS

The authors declare that there is no conflict of interest requiring disclosure in this article.

REFERENCES

  1. 1.
    V. S. Arutyunov, V. I. Savchenko, and M. Yu. Sinev, Gaz. Biznes, No. 3, 24 (2011).Google Scholar
  2. 2.
    V. D. Rusanov and A. A. Fridman, Physics of Chemically Active Plasma (Nauka, Moscow, 1981) [in Russian].Google Scholar
  3. 3.
    A. I. Pushkarev and G. E. Remnev, Applied Plasma Chemistry (TPI, Tomsk, 2011) [in Russian].Google Scholar
  4. 4.
    E. Tana, S. Unala, A. Doganb, et al., Radiat. Phys. Chem. 119, 109 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Basfar, I. Fageeha, N. Kunnummal, et al., Fuel 87, 1446 (2008).CrossRefGoogle Scholar
  6. 6.
    J. Kim, Y. Kim, B. Han, et al., J. Korean Phys. Soc. 59, 3494 (2011).CrossRefGoogle Scholar
  7. 7.
    A. I. Pushkarev, A. M. Zhu, X.-S. Li, and R. V. Sazonov, High Energy Chem. 43, 156 (2009).CrossRefGoogle Scholar
  8. 8.
    E. Tatarova, N. Bundaleska, J. Ph. Sarrette, and C. M. Ferreira, Plasma Sources Sci. Technol. 23, 063002 (2014).CrossRefGoogle Scholar
  9. 9.
    Ph. G. Rutberg, A. N. Bratsev, V. A. Kuznetsov, et al., Tech. Phys. Lett. 40, 725 (2014).CrossRefGoogle Scholar
  10. 10.
    X. Tao, M. Bai, H. Long, et al., Prog. Energy Combust. Sci. 37, 113 (2011).CrossRefGoogle Scholar
  11. 11.
    R. G. Sharafutdinov, E. E. Son, S. V. Alekseenko, et al., in Proceedings of XXXII International Conference on Phenomena in Ionized Gases (Iasi, Romania, 2015).Google Scholar
  12. 12.
    R. G. Sharafutdinov, P. A. Skovorodko, S. A. Gorodetskii, et al., RU Patent No. 2612267 (2015).Google Scholar
  13. 13.
    A. N. Zavilopulo, M. I. Mykyta, A. N. Mylymko, and O. B. Shpenik, Tech. Phys. 83, 1251 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • R. G. Sharafutdinov
    • 1
    Email author
  • V. O. Konstantinov
    • 1
  • V. I. Fedoseev
    • 1
  • V. G. Shchukin
    • 1
  • S. A. Gorodetskii
    • 1
  1. 1.Kutateladze Institute of Thermal Physics, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations