Advertisement

New Approaches to the Design of Nickel, Cobalt, and Nickel–Cobalt Catalysts for Partial Oxidation and Dry Reforming of Methane to Synthesis Gas

Abstract

New approaches to the formation of active, selective, and stable Ni, Co, and Ni–Co catalysts for partial oxidation and dry reforming of methane into synthesis gas (a mixture of hydrogen and carbon monoxide) are considered.

This is a preview of subscription content, log in to check access.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

REFERENCES

  1. 1

    A. Holmen, Catal. Today 142, 2 (2009).

  2. 2

    Hydrogen and Syngas Production and Purification Technologies, Ed. by K. Liu, C. Song, and V. Subramani (Wiley, Hoboken, NJ, 2009).

  3. 3

    V. S. Arutyunov and O. V. Krylov, Oxidative Conversion of Methane (Nauka, Moscow, 1998) [in Russian].

  4. 4

    O. V. Krylov, Heterogeneous Catalysis (Akademkniga, Moscow, 2004) [in Russian].

  5. 5

    V. S. Arutyunov and O. V. Krylov, Usp. Khim. 74, 1216 (2005).

  6. 6

    N. Ya. Usachev, V. V. Kharlamov, E. P. Belanova, et al., Ross. Khim. Zh. 52 (4), 22 (2008).

  7. 7

    N. Ya. Usachev, V. V. Kharlamov, E. P. Belanova, et al., Pet. Chem. 51, 96 (2011).

  8. 8

    Y. H. Hu and E. Ruckenstein, Adv. Catal. 48, 297 (2004).

  9. 9

    B. C. Enger, R. Lodeng, and A. Holmen, Appl. Catal., A 346, 1 (2008).

  10. 10

    B. C. Enger, R. Lodeng, and A. Holmen, Catal. Lett. 134, 13 (2010).

  11. 11

    A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., Appl. Catal., A 489, 140 (2015).

  12. 12

    B. Zhenghong and Y. Fei, Adv. Bioenergy 3, 43 (2018).

  13. 13

    J. S. Kang, D. H. Kim, S. D. Lee, et al., Appl. Catal., A 332, 153 (2007).

  14. 14

    C. S. Song and P. Wei, Catal. Today 98, 463 (2004).

  15. 15

    M. A. Pena, J. P. Gomez, and J. L. G. Fierro, Appl. Catal., A 144, 7 (1996).

  16. 16

    S. A. Al-Sayari, Open Catal. J. 6, 17 (2013).

  17. 17

    H. Liander, Trans. Faraday Soc. 25, 462 (1929).

  18. 18

    K. Dossumov, G. Y. Yergazyieva, L. K. Myltykbayeva, et al., Coke Chem. 58, 178 (2015).

  19. 19

    Y. Ji, W. Li, H. Xu, and Y. Chen, Appl. Catal., A 213, 25 (2001).

  20. 20

    H. M. Swaan, R. Rouanet, P. Widyananda, and C. Mirodatos, Stud. Surf. Sci. Catal. 107, 447 (1997).

  21. 21

    C. T. Au, Y. H. Hu, and H. L. Wan, Catal. Lett. 11, 199 (1994).

  22. 22

    H. Y. Wang and E. Ruckenstein, Catal. Lett. 75, 13 (2001).

  23. 23

    V. R. Choudhary, S. D. Sansare, and A. S. Mamman, Appl. Catal., A 90, 1 (1992).

  24. 24

    Y. H. Hu and E. Ruckenstein, Catal. Lett. 57, 167 (1999).

  25. 25

    H. Y. Wang and E. Ruckenstein, J. Catal. 199, 309 (2001).

  26. 26

    V. R. Choudhary, V. H. Rane, and A. M. Rajput, Catal. Lett. 22, 289 (1993).

  27. 27

    X. Bi, P. Hong, X. Xie, and S. Dai, React. Kinet. Catal. Lett. 66, 381 (1999).

  28. 28

    L. D. Vella, J. A. Villoria, S. Specchia, et al., Catal. Today 171, 84 (2011).

  29. 29

    W. Dong, K. Jun, H. Roh, et al., Catal. Lett. 78, 215 (2002).

  30. 30

    H. Liu and D. He, Catal. Surv. Asia 16, 53 (2012).

  31. 31

    G. Pantaleoa, V. La Parola, F. Deganello, et al., Appl. Catal., B 189, 233 (2016).

  32. 32

    R. K. Singha, A. Shukla, A. Yadav, et al., Appl. Catal., B 202, 473 (2017).

  33. 33

    A. G. Bhavani, W. Y. Kim, J. W. Lee, and J. S. Lee, ChemCatChem 7, 1445 (2015).

  34. 34

    J. Cihlar, Jr., R. Vrba, K. Castkova, and J. Cihlar, Int. J. Hydrogen Energy 42, 19920 (2017).

  35. 35

    R. Jin, Y. Chen, W. Li, et al., Appl. Catal., A 201, 71 (2000).

  36. 36

    L. Rodrigues, R. B. Silva, M. G. C. Rocha, et al., Catal. Today 197, 137 (2012).

  37. 37

    C. T. Au, Y. H. Hu, and H. L. Wan, Catal. Lett. 11, 199 (1994).

  38. 38

    M. Li and A. C. van Veen, Appl. Catal., B 237, 641 (2018).

  39. 39

    T. H. Nguyen, A. Lamacz, P. Beaunier, et al., Appl. Catal., B 152–153, 360 (2014).

  40. 40

    T. H. Nguyen, A. Lamacz, A. Krzton, et al., Appl. Catal., B 165, 389 (2015).

  41. 41

    T. H. Nguyen, A. Lamacz, A. Krzton, et al., Appl. Catal., B 182, 385 (2016).

  42. 42

    T. H. Nguyen, A. Lamacz, A. Krzton, and G. Djega-Mariadassou, Appl. Catal., B 199, 424 (2016).

  43. 43

    V. A. Kondratenko, C. Berger-Karin, and E. V. Kondratenko, ACS Catal. 4, 3136 (2014).

  44. 44

    J. B. Claridge, M. L. H. Green, S. C. Tsang, et al., Catal. Lett. 22, 299 (1993).

  45. 45

    M. C. J. Bradford and M. A. Vannice, Appl. Catal., A 142, 73 (1996).

  46. 46

    M. C. J. Bradford and M. A. Vannice, Catal. Rev. Sci. Eng. 41, 1 (1999).

  47. 47

    A. P. E. York, T. Xiao, M. L. H. Creen, and J. B. Claridge, Catal. Rev. Sci. Eng. 49, 511 (2007).

  48. 48

    V. Yu. Bychkov, O. V. Krylov, and V. N. Korchak, Kinet. Catal. 43, 86 (2002).

  49. 49

    V. Yu. Bychkov, Yu. P. Tyulenin, O. V. Krylov, and V. N. Korchak, Kinet. Catal. 43, 724 (2002).

  50. 50

    V. Yu. Bychkov, Yu. P. Tyulenin, and V. N. Korchak, Kinet. Catal. 44, 353 (2003).

  51. 51

    W. Shan, M. Fleys, F. Lapicque, et al., Appl. Catal., A 311, 24 (2006).

  52. 52

    A. Garcia, N. Becerra, L. Garcia, et al., Adv. Chem. Eng. Sci. 1, 169 (2011).

  53. 53

    X. Yin and L. Hong, Appl. Catal., A 371, 153 (2009).

  54. 54

    V. R. Choudhary, K. C. Mondal, A. S. Mamman, and U. A. Joshi, Catal. Lett. 100, 271 (2005).

  55. 55

    C. R. B. Silva, L. da Conceição, N. F. P. Ribeiro, and M. M. V. M. Souza, Catal. Commun. 12, 665 (2011).

  56. 56

    M. Morales, F. Espiell, and M. Segarra, Int. J. Hydrogen Energy 39, 6454 (2014).

  57. 57

    C. Guo, X. Zhang, J. Zhang, and Y. Wang, J. Mol. Catal., A 269, 254 (2007).

  58. 58

    M. A. Pena and J. L. G. Fierro, Chem. Rev. 101, 1981 (2001).

  59. 59

    S. Royer, D. Duprez, F. Can, et al., Chem. Rev. 114, 10292 (2014).

  60. 60

    F. Mudu, U. Olsbye, B. Arstad, et al., Appl. Catal., A 523, 171 (2016).

  61. 61

    A. Thursfield, A. Murugan, R. Franca, and I. S. Metcalfe, Energy Environ. Sci. 5, 7421 (2012).

  62. 62

    M. Stojanovic, C. A. Mims, H. Moudallal, et al., J. Catal. 166, 324 (1997).

  63. 63

    M. Crespin and W. K. Halls, J. Catal. 69, 359 (1981).

  64. 64

    H. Zhu, P. Zhang, and S. Dai, ACS Catal. 5, 6370 (2015).

  65. 65

    J. Cheng and A. Navrotsky, J. Mater. Res. 18, 2501 (2003).

  66. 66

    J. Staniforth, S. E. Evans, O. J. Good, et al., Dalton Trans. 43, 15022 (2014).

  67. 67

    H. Provendier, C. Petit, C. Estournes, et al., Appl. Catal., A 180, 163 (1999).

  68. 68

    K. T. C. Roseno, R. Brackmann, M. A. Silva, and M. Schmal, Int. J. Hydrogen Energy 41, 18178 (2016).

  69. 69

    G. C. de Araujo, S. Lima, M. C. Rangel, et al., Catal. Today 107–108, 906 (2005).

  70. 70

    J. Cheng and A. Navrotsky, J. Mater. Res. 20, 191 (2005).

  71. 71

    R. Lago, G. Bini, M. A. Pena, and J. L. G. Fierro, J. Catal. 167, 198 (1997).

  72. 72

    T. Hayakawa, H. Harihara, A. G. Andersen, et al., Appl. Catal., A 149, 391 (1997).

  73. 73

    A. Slagtern and U. Olsbye, Appl. Catal., A 110, 99 (1994).

  74. 74

    F. S. Toniolo, R. N. Magalhaes, C. A. Perez, and M. Schmal, Appl. Catal., A 117–118, 156 (2012).

  75. 75

    H. Provendier, C. Petit, C. Estoumes, and A. Kienemann, Stud. Surf. Sci. Catal. 119, 741 (1998).

  76. 76

    K. Y. Pradeep and D. Taraknath, Int. J. Hydrogen Energy 44, 1659 (2019).

  77. 77

    J. W. Nam, H. Chae, S. H. Lee, et al., Stud. Surf. Sci. Catal. 119, 843 (1998).

  78. 78

    M. S. Santos, R. C. R. Neto, F. B. Noronha, et al., Catal. Today 299, 229 (2018).

  79. 79

    W.-J. Jang, J.-O. Shim, H.-M. Kim, et al., Catal. Today 324, 15 (2019).

  80. 80

    C. Batiot-Dupeyrat, G. Valderrama, A. Meneses, et al., Appl. Catal., A 248, 143 (2003).

  81. 81

    R. Perenıguez, V. M. Gonzalez-DelaCruz, J. P. Holgado, and A. Caballero, Appl. Catal., B 93, 346 (2010).

  82. 82

    G. Valderrama, A. Kiennemann, C. U. de Navarro, and M. R. Goldwasser, Appl. Catal., A 565, 26 (2018).

  83. 83

    G. Valderrama, A. Kiennemann, and M. R. Goldwasser, Catal. Today 113–135, 142 (2008).

  84. 84

    G. Valderrama, A. Kiennemann, and M. R. Goldwasser, J. Power Sources 195, 1765 (2010).

  85. 85

    G. Valderrama, C. U. de Navarro, and M. R. Goldwasser, J. Power Sources 234, 31 (2013).

  86. 86

    S. M. Lima, J. M. Assaf, M. A. Pena, and J. L. G. Fierro, Appl. Catal., A 311, 94 (2006).

  87. 87

    G. Amow and S. J. Skinner, J. Solid State Electrochem. 10, 538 (2006).

  88. 88

    M. Merz, D. Fuchs, A. Assmann, et al., Phys. Rev. B: Condens. Matter 84, 014436 (2011).

  89. 89

    J. R. de Paz, J. H. Velasco, M. T. Fernandez-Diaz, et al., J. Solid State Chem, 148, 361 (1999).

  90. 90

    H. Mao, Y. Wei, and H. Gui, J. Appl. Phys. 115, 213910 (2014).

  91. 91

    G. Amow, P. S. Whitfield, I. J. Davidson, et al., Ceram. Int. 30, 1635 (2004).

  92. 92

    Y. Toyosumi, H. Ishikawa, and K. Ishikawa, J. Alloys Compd. 408–412, 1200 (2006).

  93. 93

    H. Taguchi, H. Kido, and K. Tabata, Physica A 344, 271.

  94. 94

    W. Wong-Ng, W. Laws, K. R. Talley, et al., J. Solid State Chem. 215, 128 (2014).

  95. 95

    T. N. Gartman, F. S. Sovetin, E. A. Borovkova, et al., Pet. Chem. 55, 455 (2015).

  96. 96

    A. G. Dedov, A. S. Loktev, D. A. Komissarenko, et al., Fuel Process. Technol. 148, 128 (2016).

  97. 97

    A. G. Dedov, A. S. Loktev, G. N. Mazo, et al., Dokl. Phys. Chem. 462, 99 (2015).

  98. 98

    A. G. Dedov, D. A. Komissarenko, A. S. Loktev, et al., Theor. Found. Chem. Eng. 48, 700 (2014).

  99. 99

    A. G. Dedov, O. A. Shlyakhtin, A. S. Loktev, et al., Dokl. Chem. 484, 16 (2019).

  100. 100

    M. M. Nair and S. Kaliaguine, New J. Chem. 40, 4049 (2016).

  101. 101

    A. G. Dedov, A. S. Loktev, V. K. Ivanov, et al., Dokl. Phys. Chem. 461, 73 (2015).

  102. 102

    A. G. Dedov, A. S. Loktev, I. E. Mukhin, et al., Pet. Chem. 59, 385 (2019).

  103. 103

    O. Gonzalez, J. Lujano, E. Pietri, and M. R. Goldwasser, Catal. Today 107-108, 436 (2005).

  104. 104

    S. Zhang, J. Wang, H. Liu, and X. Wang, Catal. Commun. 9, 995 (2008).

  105. 105

    S. Damyanova, B. Pawelec, K. Arishtirova, et al., Ap-pl. Catal., B 92, 250 (2009).

  106. 106

    S. Damyanova, B. Pawelec, R. Palcheva, et al., Appl. Catal., B 225, 340 (2018).

  107. 107

    K. Parkhomenko, A. Tyunyaev, L. M. Martinez Tejada, et al., Catal. Today 189, 129 (2012).

  108. 108

    H. Liu, S. Li, S. Zhang, et al., Catal. Commun. 9, 51 (2008).

  109. 109

    D. Liu, X.-Y. Quek, H. H. A. Wah, et al., Catal. Today 148, 243 (2009).

  110. 110

    D. Liu, W. N. E. Cheo, Y. W. Y. Lim, et al., Catal. Today 154, 229 (2010).

  111. 111

    B. Erdogan, H. Arbag, and N. Yasyerli, Int. J. Hydrogen Energy 43, 1396 (2018).

  112. 112

    S. Zhang, S. Muratsugu, N. Ishiguro, and M. Tada, ACS Catal. 3, 1855 (2013).

  113. 113

    M. Kaydouh, N. El Hassan, A. Davidson, et al., C. R. Chim. 18, 293 (2015).

  114. 114

    T. Xie, X. Zhao, J. Zhang, et al., Int. J. Hydrogen Energy 40, 9685 (2015).

  115. 115

    Z. Liu, J. Zhou, K. Cao, et al., Appl. Catal., B 125, 324 (2012).

  116. 116

    T. Xie, L. Shi, J. Zhang, and D. Zhang, Chem. Commun. 50, 7250 (2014).

  117. 117

    Y. H. Guo, C. Xia, and B. S. Liu, Chem. Eng. J. 237, 421 (2014).

  118. 118

    I. Rivas, J. Alvarez, E. Pietri, et al., Catal. Today 149, 388 (2010).

  119. 119

    N. Wang, X. Yu, Y. Wang, et al., Catal. Today 212, 98 (2013).

  120. 120

    M. M. Nair, S. Kaliaguine, and F. Kleitz, ACS Catal. 4, 3837 (2014).

  121. 121

    L. Xu, H. Songa, and L. Chou, Catal. Sci. Technol. 1, 1032 (2011).

  122. 122

    J. Newnham, K. Mantri, M. H. Amin, et al., Int. J. Hydrogen Energy 37, 1454 (2012).

  123. 123

    L. Xu, H. Song, and L. Chou, ACS Catal. 2, 1331 (2012).

  124. 124

    W. Shen, H. Momoi, K. Komatsubara, et al., Catal. Today 171, 150 (2011).

  125. 125

    X. Du, D. Zhang, R. Gao, et al., Chem. Commun. 49, 6770 (2013).

  126. 126

    Z. Bao, Y. Lu, J. Han, et al., Appl. Catal., A 491, 116 (2015).

  127. 127

    N. Sun, X. Wen, F. Wang, et al., Energy Environ. Sci. 3, 366 (2010).

  128. 128

    A. Peters, F. Nouroozi, D. Richter, et al., ChemCatChem 3, 598 (2011).

  129. 129

    S. Sokolov, E. V. Kondratenko, M. Pohl, et al., Appl. Catal., B 113–114, 19 (2012).

  130. 130

    G. Liu, J. Zhang, Y. Xu, and Y. Sun, Int. J Hydrogen Energy 43, 15030 (2018).

  131. 131

    I. V. Zagaynov, A. S. Loktev, A. L. Arashanova, et al., Chem. Eng. J. 290, 193 (2016).

  132. 132

    I. V. Zagaynov, A. S. Loktev, I. E. Mukhin, et al., Mendeleev Commun. 27, 509 (2017).

  133. 133

    I. V. Zagaynov, A. S. Loktev, I. E. Mukhin, et al., Mendeleev Commun. 29, 22 (2019).

  134. 134

    J.-S. Chang, S.-E. Park, and H. Chon, Appl. Catal., A 145, 111 (1996).

  135. 135

    A. Luengnaruemitchai and A. Kaengsilalai, Chem. Eng. J. 144, 96 (2008).

  136. 136

    A. N. Pinheiro, A. Valentini, J. M. Sasaki, and A. C. Oliveira, Appl. Catal., A 355, 156 (2009).

  137. 137

    P. Frontera, A. Aloise, A. Macario, et al., Top. Catal. 53, 265 (2010).

  138. 138

    J. Estephane, M. Ayoub, Kh. Safieh, et al., C. R. Chim.18, 277 (2015).

  139. 139

    W. D. Zhang, B. S. Liu, C. Zhu, and Y. L. Tian, Appl. Catal., A 292, 138 (2005).

  140. 140

    K. A. Chalupka, W. K. Jozwiak, J. Rynkowski, et al., Appl. Catal., B 146, 227 (2014).

  141. 141

    P. Frontera, A. Macario, A. Aloise, et al., Catal. Today 218–219, 18 (2013).

  142. 142

    J. Estephane, S. Aouad, S. Hany, et al., Int. J. Hydrogen Energy 40, 9201 (2015).

  143. 143

    M. Abdollahifar, M. Haghighi, and M. Sharifi, Energy Convers. Manag. 103, 1101 (2015).

  144. 144

    C. Dai, S. Zhang, A. Zhang, C. Song, C. Shi, X. Guo, J. Mater. Chem. A 3, 16461 (2015).

  145. 145

    G. Moradi, F. Khezeli, and H. Hemmati, J. Nat. Gas Sci. Eng. 33, 657 (2016).

  146. 146

    A. I. Osman, J. Meudal, F. Laffir, et al., Appl. Catal., B 212, 68 (2017).

  147. 147

    M. Sharifi, M. Haghighi, and M. Abdollahifar, J. Nat. Gas Sci. Eng. 23, 547 (2015).

  148. 148

    A. G. Dedov, A. S. Loktev, I. E. Mukhin, et al., Petr. Chem. 58, 203 (2018).

  149. 149

    A. G. Dedov, A. S. Loktev, D. A. Levchenko, et al., Theor. Found. Chem. Eng. 49, 502 (2015).

  150. 150

    J. R. Rostrup-Nielsen and J. H. Bak Hansen, J. Catal. 144, 38 (1993).

  151. 151

    F. Basile, L. Basini, M. D’Amore, et al., J. Catal. 173, 247 (1998).

  152. 152

    A. Bhattacharyya, V. W. Chang, and D. J. Schumacher, Appl. Clay Sci. 13, 317 (1998).

  153. 153

    T. Shishido, M. Sukenobu, H. Morioka, et al., Catal. Lett. 73, 21 (2001).

  154. 154

    K. M. Lee and W. Y. Lee, Catal. Lett. 83, 65 (2002).

  155. 155

    A. I. Tsyganok, T. Tsunoda, S. Hamakawa, et al., J. Catal. 213, 191 (2003).

  156. 156

    K. Takehira, T. Shishido, P. Wan, et al., J. Catal. 221, 43 (2004).

  157. 157

    J. Guo, H. Lou, H. Zhao, et al., Appl. Catal., A 273, 75 (2004).

  158. 158

    Z. Hou and T. Yashima, Appl. Catal., A 261, 205 (2004).

  159. 159

    O. W. Perez-Lopez, A. Senger, N. R. Marcilio, and M. A. Lansarin, Appl. Catal., A 303, 234 (2006).

  160. 160

    T. P. Maniecki, K. Bawolak-Olczak, P. Mierczyński, et al., Chem. Eng. J. 154, 142 (2009).

  161. 161

    A. Serrano-Lotina, L. Rodriguez, G. Muñoz, and L. Daza, J. Power Sources 196, 4404 (2011).

  162. 162

    A. Serrano-Lotina, A. J. Martin, M. A. Folgado, and L. Daza, Int. J. Hydrogen Energy 37, 12342 (2012).

  163. 163

    A. Serrano-Lotina and L. Daza, J. Power Sources 238, 81 (2013).

  164. 164

    A. Serrano-Lotina and L. Daza, Appl. Catal., A 474, 107 (2014).

  165. 165

    G. de Souza, C. Ruoso, N. R. Marcilio, and O. W. Perez-Lopez, Chem. Eng. Commun. 203, 783 (2016).

  166. 166

    C. Tanios, S. Bsaibes, C. Gennequin, et al., Int. J. Hydrogen Energy 42, 12818 (2017).

  167. 167

    A. G. Dedov, A. S. Loktev, V. P. Danilov, et al., Petr. Chem. 58, 418 (2018).

Download references

Author information

Correspondence to A. S. Loktev.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this article.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Moiseev, I.I., Loktev, A.S., Shlyakhtin, O.A. et al. New Approaches to the Design of Nickel, Cobalt, and Nickel–Cobalt Catalysts for Partial Oxidation and Dry Reforming of Methane to Synthesis Gas. Pet. Chem. 59, S1–S20 (2019). https://doi.org/10.1134/S0965544119130115

Download citation

Keywords:

  • synthesis gas
  • partial oxidation of methane
  • dry reforming of methane
  • nickel
  • cobalt
  • perovskite-like oxides
  • mesoporous materials
  • zeolites
  • magnesium–aluminum hydrotalcite