Petroleum Chemistry

, Volume 59, Supplement 1, pp S60–S65 | Cite as

Effect of Template Structure on the Zeolite ZSM-12 Crystallization Process Characteristics

  • L. A. KulikovEmail author
  • D. E. Tsaplin
  • M. I. Knyazeva
  • I. S. Levin
  • S. V. Kardashev
  • T. Yu. Filippova
  • A. L. Maksimov
  • E. A. Karakhanov


Characteristics of zeolite ZSM-12 crystallization using methyltriethylammonium chloride and N,N-dimethyl-N-ethyl(monoethanol)ammonium bromide as templates have been studied. The materials have been characterized by X-ray diffraction analysis, scanning electron microscopy, X-ray fluorescence analysis, low-temperature nitrogen adsorption–desorption, temperature-programmed desorption of ammonia, and solid-state 27Al nuclear magnetic resonance spectroscopy. It has been shown that dimethylethylethanolammonium bromide inhibits crystal growth along the a and c planes and thereby contributes to crystal growth only in the direction of the b axis, which, in turn, leads to lower surface area and acidity of the sample than the respective parameters of the zeolite synthesized using methyltriethylammonium chloride.


ZSM-12 crystallization hydrothermal synthesis 



This work was performed using the equipment of the Center for collective use “Analytical Center for Problems of Deep Oil Refining and Petroleum Chemistry” of Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences.


This work was supported by the Ministry of Education and Science of the Russian Federation under the federal target program “Research and Development in Priority Fields of Science and Engineering in Russia for 2014–2020” (provision 1.4; subsidies agreement no. 14.610.21.0009 dated October 3, 2017; unique project identifier of RFMEFI61017X0009).


A.L. Maksimov is the editor-in-chief of the Petroleum Chemistry journal. The other authors declare that there is no conflict of interest regarding the publication of this manuscript.


  1. 1.
    L. Dimitrov, M. Mihaylov, K. Hadjiivanov, and V. Mavrodinova, Microporous Mesoporous Mater. 143, 291 (2011).CrossRefGoogle Scholar
  2. 2.
    C. Li, L. Li, W. Wu, et al., Procedia Eng. 18, 200 (2011).CrossRefGoogle Scholar
  3. 3.
    J. Li, L.-L. Lou, C. Xu, and S. Liu, Catal. Commun. 50, 97 (2014).CrossRefGoogle Scholar
  4. 4.
    A. Chokkalingam, H. Kawagoe, S. Watanabe, et al., J. Mol. Catal., A 367, 23 (2013).Google Scholar
  5. 5.
    S. Mehla, K. R. Krishnamurthy, B. Viswanathan, et al., Microporous Mesoporous Mater. 177, 120 (2013).CrossRefGoogle Scholar
  6. 6.
    A. V. Toktarev and K. G. Ione, Stud. Surf. Sci. Catal. 105, 333 (1997).CrossRefGoogle Scholar
  7. 7.
    M. Kasunič, J. Legiša, A. Meden, et al., Microporous Mesoporous Mater. 122, 255 (2009).CrossRefGoogle Scholar
  8. 8.
    M. Počkaj, A. Meden, N. Zabukovec-Logar, et al., Microporous Mesoporous Mater. 263, 236 (2018).CrossRefGoogle Scholar
  9. 9.
    R. Kore and R. Srivastava, RSC Adv. 2, 10072 (2012).CrossRefGoogle Scholar
  10. 10.
    B. Han, S.-H. Lee, C.-H. Shin, et al., Chem. Mater. 17, 477 (2005).CrossRefGoogle Scholar
  11. 11.
    A. Moini, K. D. Schmitt, E. W. Valyocsik, and R. F. Polomski, Stud. Surf. Sci. Catal. 84, 23 (1994).CrossRefGoogle Scholar
  12. 12.
    O. Vesely, H. Pang, S. M. Vornholt, et al., Catal. Today 324, 123 (2019).CrossRefGoogle Scholar
  13. 13.
    N. Masoumifard, S. Kaliaguine, and F. Kleitz, Microporous Mesoporous Mater. 227, 258 (2016).CrossRefGoogle Scholar
  14. 14.
    D. E. Tsaplin, D. A. Makeeva, L. A. Kulikov, et al., Russ. J. Appl. Chem. 91, 1957 (2018).CrossRefGoogle Scholar
  15. 15.
    S. Ernst, P. A. Jacobs, J. A. Martens, and J. Weitkamp, Zeolites 7, 458 (1987).CrossRefGoogle Scholar
  16. 16.
    S. Ritsch, N. Ohnishi, T. Ohsuna, et al., Chem. Mater. 10, 3958 (1998).CrossRefGoogle Scholar
  17. 17.
    X. Chen, W. Yan, X. Cao, et al., Microporous Mesoporous Mater. 119, 217 (2009).CrossRefGoogle Scholar
  18. 18.
    Y. Kamimura, K. Iyoki, S. P. Elangovan, et al., Microporous Mesoporous Mater. 163, 282 (2012).CrossRefGoogle Scholar
  19. 19.
    Q. Wang, Z.-M. Cui, C.-Y. Cao, and W.-G. Song, J. Phys. Chem. C 115, 24987 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • L. A. Kulikov
    • 1
    Email author
  • D. E. Tsaplin
    • 1
  • M. I. Knyazeva
    • 2
  • I. S. Levin
    • 2
  • S. V. Kardashev
    • 1
  • T. Yu. Filippova
    • 1
  • A. L. Maksimov
    • 1
    • 2
  • E. A. Karakhanov
    • 1
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations