Advertisement

Highly Active Bulk Mo(W)S2 Hydrotreating Catalysts Synthesized by Etching out of the Carrier from Supported Mono- and Bimetallic Sulfides

Abstract

A bulk MoWS2 catalyst has been synthesized by acid etching of the carrier from the supported MoWS2/Al2O3 catalyst obtained on the basis of the mixed bimetallic heteropoly acid (HPA) H4[SiMo3W9O40]. As reference samples, monometallic MoS2 and WS2 catalysts have been prepared from the corresponding supported analogues, as well as a Mo + WS2 sample based on a mechanical mixture of monometallic HPA in the atomic ratio of Mo/W = 1/3. The catalytic properties of the synthesized catalysts have been studied in model reactions of hydrodesulfurization (HDS) of dibenzthiophene (DBT) and hydrogenation (HYD) of naphthalene in a flow unit. It has been shown that the catalytic activity of the samples in both the DBT HDS and naphthalene HYD reactions increases in the following order: MoS2 < WS2 < Mo + WS2\( \ll \) MoWS2. It has been found that the bulk tungsten-containing catalysts exhibit higher specific catalytic activity than the supported counterparts. Increased values of hydrogen uptake according to the results of hydrogen temperature-programmed reduction for the bulk catalysts indicate an increase in the number of active sites and the formation of a more effective active phase compared to supported catalysts.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Fig. 1.
Fig. 2.
Fig. 3.

REFERENCES

  1. 1

    S. Sigurdson, V. Sundaramurthy, A. K. Dalai, and J. Adjaye, J. Mol. Catal., A 291, 30 (2008).

  2. 2

    C. Thomazeau, C. Geantet, M. Lacroix, et al., Appl. Catal., A 322, 92 (2007).

  3. 3

    H. Yu, S. Li, and G. Jin, Energy Fuels 24, 4419 (2010).

  4. 4

    M. Nikulshina, A. Mozhaev, C. Lancelot, et al., Appl. Catal., B 224, 951 (2018).

  5. 5

    D. Liu, L. Liu, G. Li, and C. Liu, J. Nat. Gas Chem. 19, 530 (2010).

  6. 6

    R. Huirache-Acuna, B. Pawelec, E. Rivera-Muñoz, Appl. Catal., B 92, 168 (2009).

  7. 7

    M. E. Cervantes-Gaxiola, M. Arroyo-Albiter, A. Pérez-Larios, et al., Fuel 113, 733 (2013).

  8. 8

    J. A. Mendoza-Nieto, O. Vera-Vallejo, L. Escobar-Alarcón, et al., Fuel 110, 268 (2013).

  9. 9

    S. Sigurdson, V. Sundaramurthy, A. K. Dalai, and J. Adjaye, J. Mol. Catal., A 291, 30 (2008).

  10. 10

    A. V. Mozhaev, M. S. Nikul’shina, C. Lancelot, et al., Pet. Chem. 58, 1198 (2018).

  11. 11

    M. S. Nikulshina, P. Blanchard, A. Mozhaev, et al., Catal. Sci. Technol. 8, 5557 (2018).

  12. 12

    M. S. Nikul’shina, A. V. Mozhaev, P. P. Minaev, et al., Kinet. Catal. 58, 825 (2017).

  13. 13

    A. Stanislaus, A. Marafi, and M. S. Rana, Catal. Today 153, 1 (2010).

  14. 14

    G. Hagenbach, Ph. Courty, and B. Delmon, J. Catal. 23, 295 (1971).

  15. 15

    G. Hagenbach, Ph. Coutry, and B. Delmon, J. Catal. 31, 264 (1973).

  16. 16

    R. Candia, B. S. Clausen, and H. Topsoe, J. Catal. 77, 564 (1982).

  17. 17

    H. Topsoe, B. S. Clausen, R. Candia, et al., J. Catal. 68, 433 (1981).

  18. 18

    C. Wivel, R. Candia, B. S. Clausen, et al., J. Catal. 68, 453 (1981).

  19. 19

    R. Candia, B. S. Clausen, and H. Topsoe, Bull. Soc. Chim. Belg. 90, 1225 (1981).

  20. 20

    M. Zdrazil, Catal. Today 3, 269 (1988).

  21. 21

    G. Alonso, J. Yang, M. H. Siadati, and R. R. Chianelli, Inorg. Chim. Acta 325, 193 (2001).

  22. 22

    F. Subhan, J. Hazard. Mater. 239–240, 370 (2012).

  23. 23

    D. Genuit, I. Bezverkhyy, and P. Afanasiev, J. Solid State Chem. 178, 2759 (2005).

  24. 24

    Y. Li, A. Li, F. Li, et al., J. Catal. 317, 240 (2014).

  25. 25

    A. N. Varakin, A. V. Mozhaev, A. A. Pimerzin, and P. A. Nikulshin, Appl. Catal., B 238, 498 (2018).

  26. 26

    S. N. Khadzhiev, Kh. M. Kadiev, L. A. Zekel’, and M. Kh. Kadieva, Pet. Chem. 58, 535 (2018).

  27. 27

    S. N. Khadzhiev, Pet. Chem. 56, 465 (2016).

  28. 28

    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54, 323 (2014).

  29. 29

    S. Zhang, D. Liu, W. Deng, and G. Que, Energy Fuels 21, 3057 (2007).

  30. 30

    G. Bellussi, G. Rispoli, A. Landoni, et al., J. Catal. 308, 189 (2013).

  31. 31

    G. Bellussi, G. Rispoli, D. Molinari, et al., Catal. Sci. Technol. 3, 176 (2013).

  32. 32

    M. T. Nguyen, N. T. Nguyen, J. Cho, et al., J. Ind. Eng. Chem. 43, 1 (2016).

  33. 33

    I. A. Sizova and A. L. Maksimov, Pet. Chem. 57, 595 (2017).

  34. 34

    I. A. Sizova, S. V. Antonov, S. I. Serdyukov, and A. L. Maksimov, Pet. Chem. 57, 66 (2017).

  35. 35

    Yu. A. Topolyuk, A. L. Maksimov, and Yu. G. Kolyagin, Russ. J. Phys. Chem. A 91, 205 (2017).

  36. 36

    N. N. Petrukhina, I. A. Sizova, and A. L. Maksimov, Catal. Ind. 9, 247 (2017).

  37. 37

    S. Kasztelan, H. Toulhoat, J. Grimblot, and J. P. Bonnelle, Appl. Catal. 13, 127 (1984).

  38. 38

    D. H. Broderick and B. C. Gates, Am. Inst. Chem. Eng. 27, 663 (1981).

  39. 39

    H. Toulhoat and P. Raybaud, IFP Energ. Nouv. 68, 832 (2013).

  40. 40

    H. Toulhoat and P. Raybaud, J. Catal. 216, 63 (2003).

  41. 41

    M. Nikulshina, A. Mozhaev, C. Lancelot, et al., Catal. Today 329, 24 (2019).

Download references

Author information

Correspondence to A. V. Mozhaev.

Ethics declarations

The authors declare that there is no conflict of interest requiring disclosure in this paper.

Additional information

Translated by S. Zatonsky

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kokliukhin, A.S., Mozhaev, A.V., Nikulshina, M.S. et al. Highly Active Bulk Mo(W)S2 Hydrotreating Catalysts Synthesized by Etching out of the Carrier from Supported Mono- and Bimetallic Sulfides. Pet. Chem. 59, S53–S59 (2019). https://doi.org/10.1134/S0965544119130085

Download citation

Keywords:

  • hydrotreating
  • MoWS2
  • bulk catalysts
  • dibenzothiophene
  • naphthalene