Advertisement

Petroleum Chemistry

, Volume 59, Supplement 1, pp S37–S44 | Cite as

Hydroconversion of Vacuum Residue of a Blend of Western Siberian Oils in the Presence of Ex Situ Synthesized Suspensions of Nanosized Catalysts

  • Kh. M. Kadiev
  • A. M. Gyul’maliev
  • L. A. Zekel’Email author
  • M. Kh. Kadieva
  • A. U. Dandaev
  • A. E. Batov
  • M. Ya. Visaliev
Article
  • 1 Downloads

Abstract

Concentrated suspensions of nanosized МоS2, МоS2+Ni7S6, Ni7S6, Fe1– xS, and (NH4)0.25 · WO3 particles with an average size of 273–364 nm have been synthesized from reverse emulsions of aqueous solutions of molybdenum, nickel, iron, and tungsten salts in the presence of a sulfiding agent and hydrogen in oil vacuum distillation residues and tested in oil vacuum distillation residue hydroconversion running in an autoclave and a pilot flow system. The test results have shown that the highest activity in hydrogenolysis reactions is exhibited by Mo-containing catalysts. The kinetic characteristics have been determined; the heat of the hydroconversion process has been calculated.

Keywords:

oil vacuum distillation residue dispersed catalysts hydrocracking 

Notes

FUNDING

This work was performed at the Topchiev Institute of Petrochemical Synthesis of the Russian Academy of Sciences under the support of a grant from the Russian Science Foundation (project no. 17-73-30046).

CONFLICT OF INTEREST

The authors declare that there is no conflict of interest regarding the publication of this manuscript.

REFERENCES

  1. 1.
    D. Gillis, M. van Wees, and P. Zimmerman, in Proceedings of Annual Meeting of National Petrochemical and Refiners Association, March 22–24,2009, San Antonio. TX, AM-09-65, p. 15. http://virtu- dia.com/ what_we_do/web/assets/UOP_EMEA_Conference/ pdfs/Papers/Uniflex.pdf.Google Scholar
  2. 2.
    D. L. Stratiev, I. N. Shishkova, R. N. Dinkov, et al., Neftegazokhimiya, No. 1, 3 (2014).Google Scholar
  3. 3.
    O. F. Glagoleva, Mir Nefteprod., No. 5, 3 (2008).Google Scholar
  4. 4.
    A. A. Chuvasova, in Proceedings of VII International Scientific Conference, Krasnodar, February 2017 (Novatsiya, Krasnodar, 2017), p. 114 [in Russian].Google Scholar
  5. 5.
    V. Galkin, V. Makhiyanov, and M. Levinbuk, Oil Gas J. Russ., No. 3, 67 (2014). http://ogjrussia.com/issues/article/rekonstruktsiya-npz-2.Google Scholar
  6. 6.
    V. Kapustin, E. Chernysheva, and E. Timin, Oil Gas J. Russ., No. 8, 80 (2018).Google Scholar
  7. 7.
    S. N. Khadzhiev, Pet. Chem. 56, 465 (2016).CrossRefGoogle Scholar
  8. 8.
    S. Zhang, D. Liu, W. Deng, and G. Que, Energy Fuels 21, 3057 (2007).CrossRefGoogle Scholar
  9. 9.
    M. S. Rana, V. Saґmano, J. Ancheyta, and J. A. I. Diaz, Fuel 86, 1216 (2007).CrossRefGoogle Scholar
  10. 10.
    S. N. Khadzhiev and Kh. M. Kadiev, Chem. J., No. 9, 34 (2009).Google Scholar
  11. 11.
    J. Yves and M. Davidson, and J. F. Le Page, US Patent No. 4285804 (1981).Google Scholar
  12. 12.
    R. K. Lott, in Proceedings of 7th UNITAR International Conference on Heavy Crude and Tar Sand, Beijing (Petroleum Industry Press, Beijing, 1998).Google Scholar
  13. 13.
    G. Bellussi, G. Rispoli, A. Landoni, et al., J. Catal. 308, 189 (2013).CrossRefGoogle Scholar
  14. 14.
    Kh. M. Kadiev, S. N. Khadzhiev, M. Kh. Kadieva, and E. S. Dogova, Pet. Chem. 57, 608 (2017).CrossRefGoogle Scholar
  15. 15.
    A. L. Maksimov, L. A. Zekel’, M. Kh. Kadieva, et al., Pet. Chem. 59, 968 (2019).CrossRefGoogle Scholar
  16. 16.
    Kh. M. Kadiev, N. V. Oknina, A. L. Maksimov, et al., Res. J. Pharm. Biol. Chem. Sci. 7, 704 (2016).Google Scholar
  17. 17.
    Kh. M. Kadiev, L. A. Zekel’, M. Kh. Kadieva, and S. N. Khadzhiev Pet. Chem. 58, 519 (2018).CrossRefGoogle Scholar
  18. 18.
    S. G. Jeon, J.-G. Na, C. H. Ko, et al., Energy Fuels 25, 4256 (2011).CrossRefGoogle Scholar
  19. 19.
    J. Ancheyta, F. Treiro, and M. S. Rana, Asphaltenes: Chemical Transformation during Hydroprocessing of Heavy Oils (CRC, Boca Raton, 2009).Google Scholar
  20. 20.
    A. Y. León, A. Guzman, D. Laverde, et al., Energy Fuels 31, 3868 (2017).CrossRefGoogle Scholar
  21. 21.
    D. Stull, E. Westrum, and G. Sinke, The Chemical Thermodynamics of Organic Compounds (Wiley, New York, 1969).Google Scholar
  22. 22.
    A. M. Gyulmaliev, V. P. Popova, I. I. Romantsova, and A. A. Krichko, Fuel 71, 1329 (1992).CrossRefGoogle Scholar
  23. 23.
    Kh. M. Kadiev, A. M. Gyul’maliev, and N. A. Kubrin, Pet. Chem. 56, 807 (2016).Google Scholar
  24. 24.
    N. B. Vargaftik, Handbook of Thermal Properties of Gases and Liquids (Stars, Moscow, 2006) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Kh. M. Kadiev
    • 1
  • A. M. Gyul’maliev
    • 1
  • L. A. Zekel’
    • 1
    Email author
  • M. Kh. Kadieva
    • 1
  • A. U. Dandaev
    • 1
  • A. E. Batov
    • 1
  • M. Ya. Visaliev
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations