Petroleum Chemistry

, Volume 59, Supplement 1, pp S101–S107 | Cite as

Activity of a Sulfated Zirconia Catalyst in Isomerization of n-Butane Fractions

  • G. V. EchevskiiEmail author
  • D. G. Aksenov
  • E. G. Kodenev
  • E. V. Ovchinnikova
  • V. A. Chumachenko


Palladium-containing catalyst based on binder-free granular sulfated zirconium oxide for n-butane isomerization has been investigated. It has been found that Pd content of 0.2–1.0 wt % slightly influences textural characteristics and other physicochemical properties of bifunctional catalysts; however, it determines their activity and selectivity in the reaction studied, with the optimal palladium content being 0.5 wt %. Parameters of the isomerization process have been studied depending on the composition of industrial n-butane fractions. It has been shown that impurities of isobutane, propane, neopentane, isopentane and pentane in an amount of no more than 2% do not exert a effect on isobutane production; nonetheless, the conversion of n-butane and selectivity for isobutane both increase when more pure n-butane fractions are used. It has been found that the process for isobutane production by isomerization of the n-butane fraction under the optimal conditions at H2 /n-C4 = 0.1 and 140–150°C makes it possible to obtain a high isobutane yield (up to 52 wt %) and avoid the undue formation of С1–С3 alkanes.


sulfated zirconia palladium low-temperature isomerization n-butane isobutane bifunctional catalyst 



This work was supported by the Ministry of Science and Higher Education of the Russian Federation (unique project identifier RFMEFI60717X0169.


The authors declare the absence of conflict of interests demanding disclosure in this paper.


  1. 1.
    V. M. Kapustin, S. A. Karpov, and A. V. Tsarev, Oxygenates in Motor Gasolines (KolosS, Moscow, 2011) [in Russian].Google Scholar
  2. 2.
    A. S. Kharitonov, K. Yu. Koltunov, V. I. Sobolev, et al., Catal. Ind. 10, 115 (2018).CrossRefGoogle Scholar
  3. 3. Accessed April 30, 2019.Google Scholar
  4. 4. Accessed May 12, 2019.Google Scholar
  5. 5.
    P. Gupta and S. Paul, Catal. Today 236, 153 (2014).CrossRefGoogle Scholar
  6. 6.
    E. A. Yasakova, A. V. Sitdikova, and A. F. Akhmetov, Accessed May 16, 2019.Google Scholar
  7. 7.
    T. G. Khaimova and D. A. Mkhitarova, Isomerization as an Effective Way of Manufacturing of High-Octane Fuel Components (TsNIITEneftekhim, Moscow, 2005) [in Russian].Google Scholar
  8. 8.
    M. Turukalov, Neftegaz. Vertikal’, No. 16, 22 (2008).Google Scholar
  9. 9.
    IFP Training: Isomerization of Light Gasoline (ENSPM Formation Industry, 2008).Google Scholar
  10. 10.
    B. Domerg and L. Vatripon, Neftepererab. Neftekhim., No. 4, 15 (2001).Google Scholar
  11. 11.
    S. Pokrovskii, Neftegaz. Vertikal’, No. 7, 68 (2002).Google Scholar
  12. 12.
    G. A. Urzhuntsev, E. V. Ovchinnikova, V. A Chumachenko., et al., Chem. Eng. J. 238, 148 (2014).CrossRefGoogle Scholar
  13. 13.
    L. I. Kuznetsova, A. V. Kazbanova, and P. N. Kuz-netsov, Pet. Chem. 52, 86 (2012).CrossRefGoogle Scholar
  14. 14.
    M. D. Smolikov, O. V. Dzhikiya, E. V. Zatolokina, et al., Pet. Chem. 49, 473 (2009).CrossRefGoogle Scholar
  15. 15.
    L. I. Bikmetova, M. D. Smolikov, E. V. Zatolokina, et al., Procedia Eng, 152, 87 (2016).CrossRefGoogle Scholar
  16. 16.
    A. H. Shakun and M. L. Fedorova, Catal. Ind. 6, 298 (2014).CrossRefGoogle Scholar
  17. 17.
    A. N. Shakun, M. L. Fedorova, and T. V. Karpenko, in Proceedings of International Scientific-and-Practical Conference on Oil and Gas Processing “Neftegazoperarobatka-2016” (Ufa, 2016), p. 36.Google Scholar
  18. 18.
    P. N. Kuznetsov, L. I. Kuznetsova, and A. V. Kazbanova, Khim. Interesah Ustoich. Razvit. 18, 299 (2010).Google Scholar
  19. 19.
    P. N. Kuznetsov, V. P. Tverdokhlebov, L. I. Kuznetsova, A. V. Kazbanova, D. A. Mel’chakov, N. N. Dov-zhenko, Zh. Sib. Fed. Univ., Ser.: Tekh. Tekhnol. 4, 438 (2011).Google Scholar
  20. 20.
    Z. Ma, X. Meng, N. Liu, and L. Shi, Mol. Catal. 449, 114 (2018).CrossRefGoogle Scholar
  21. 21.
    A. V. Toktarev, A. B. Ayupov, and G. V. Echevsky, Catal. Today 152, 17 (2010).CrossRefGoogle Scholar
  22. 22.
    M. Yu. Smirnova, G. A. Urzhuntsev, O. V. Kikhtyanin, and G. V. Echevskii, RU Patent No. 2306175 (2007).Google Scholar
  23. 23.
    G. V. Echevskii, E. G. Kodenev, D. G. Aksenov, et al., RU Patent No. 2693464 (2019).Google Scholar
  24. 24.
    K. Tomishige, A. Okabe, and K. Fujimoto, Appl. Catal., A 194–195, 383 (2000).Google Scholar
  25. 25.
    D. Randrianasoloharisoa, T. Dintzer, A. Rakotomahevitra, et al., Surf. Sci. 604, 1040 (2010).CrossRefGoogle Scholar
  26. 26.
    O. B. Belskaya, I. G. Danilova, M. O. Kazakov, et al., Appl. Catal., A 387, 5 (2010).Google Scholar
  27. 27.
    A. F. Bedilo and K. J. Klabunde, J. Catal. 176, 448 (1998).CrossRefGoogle Scholar
  28. 28.
    V. V. Pashkov, D. V. Golinskii, I. E. Udras, and A. S. Belyi, Pet. Chem. 49, 481 (2009).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • G. V. Echevskii
    • 1
    Email author
  • D. G. Aksenov
    • 1
  • E. G. Kodenev
    • 1
  • E. V. Ovchinnikova
    • 1
  • V. A. Chumachenko
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations