Advertisement

Petroleum Chemistry

, Volume 59, Supplement 1, pp S72–S87 | Cite as

Catalytic Properties of Chromium Complexes Based on 1,2-Bis(diphenylphosphino)benzene in the Ethylene Oligomerization Reaction

  • D. N. CheredilinEmail author
  • A. M. Sheloumov
  • A. A. Senin
  • G. A. Kozlova
  • V. V. Afanas’ev
  • N. B. Bespalova
Article
  • 6 Downloads

Abstract

The activity of the catalyst systems of a number of diphosphine ligands and chromium complexes based on 1,2-bis(diphenylphosphino)benzene in the ethylene oligomerization reaction has been studied. Structural modifications of diphosphine ligands have been performed to create selective catalyst systems for ethylene oligomerization. It has been shown that the introduction of ortho-functional groups into one of the phenyl substituents at the phosphorus atom in diphosphine ligands makes it possible to carry out the process of ethylene oligomerization to 1-hexene with the selectivity of 90 wt % and above. One of the complexes (chromium complex 15) with a functionalized diphosphine ligand has been characterized by X-ray structure analysis. The influence of the change in the amount of the activator and its type on the activity of the catalyst systems has been studied. It has been shown that the replacement of some organoaluminum activator, methylaluminoxane, by trimethylaluminum does not decrease the productivity and selectivity of the catalyst systems based on diphosphine chromium complexes.

Keywords:

ethylene oligomerization diphosphine chromium complexes methylaluminoxane trimethylaluminum 

Notes

ACKNOWLEDGMENTS

The authors are grateful to the Center for Molecular Structure Investigation of the Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences for performing the X-ray structure analysis of compound 15.

CONFLICT OF INTEREST

The authors declare no conflict of interest to be disclosed in this paper.

REFERENCES

  1. 1.
    Y. V. Kissin, in Kirk-Othmer Encyclopedia of Chemical Technology, 4th Ed. (Wiley, New York, 2005), vol. 17, p. 394.Google Scholar
  2. 2.
    C. Thammanayakatip, Asia Petrochemical Industry Conference (APIC) Linear Alpha Olefins (Nexant, 2017).Google Scholar
  3. 3.
    J. T. Dixon, M. J. Green, F. M. Hess, and D. H. Morgan, J. Organomet. Chem. 689, 3641 (2004).CrossRefGoogle Scholar
  4. 4.
    K. A. Alferov, G. P. Belov, and Y. Meng, Appl. Catal., A 542, 71 (2017).Google Scholar
  5. 5.
    H. F. Mark, Encyclopedia of Polymer Science and Technology, 3rd Ed. (Wiley–Interscience, Hoboken, 2007).Google Scholar
  6. 6.
    W. K. Reagan, EP Patent No. 30417477 (1991).Google Scholar
  7. 7.
    D. F. Wass, WO Patent No. 02/04119 (2002).Google Scholar
  8. 8.
    A. Carter, S. A. Cohen, N. A. Cooley, et al., Chem. Commun., No. 8, 858 (2002).Google Scholar
  9. 9.
    D. S. McGuinness, P. Wasserscheid, W. Keim, et al., J. Am. Chem. Soc. 125, 5272 (2003).CrossRefGoogle Scholar
  10. 10.
    J. T. Dixon, P. Wasserscheid, D. S. McGuinness, et al., WO Patent No. 03053890 (2001).Google Scholar
  11. 11.
    S. Peitz, N. Peulecke, B. R. Aluri, et al., Eur. J. Inorg. Chem, No. 8, 1167 (2010).Google Scholar
  12. 12.
    M. J. Overett, K. Blann, A. Bollmann, et al., J. Mol. Catal., A 283, 114 (2008).Google Scholar
  13. 13.
    S.-K. Kim, T.-J. Kim, J.-H. Chung, et al., Organometallics 29, 5805 (2010).CrossRefGoogle Scholar
  14. 14.
    J. Zhang, X. Wang, X. Zhang, et al., ACS Catal. 3, 2311 (2013).CrossRefGoogle Scholar
  15. 15.
    N. B. Bespalova, D. N. Cheredilin, A. M. Sheloumov, et al., RU Patent No. 2556636 (2014).Google Scholar
  16. 16.
    A. R. Barron, Organometallics 14, 3581 (1995).CrossRefGoogle Scholar
  17. 17.
    T. Wenderski, K. M. Light, D. Ogrin, et al., Tetrahedron Lett. 45, 6851 (2004).CrossRefGoogle Scholar
  18. 18.
    A. Krasovskiy and P. Knochel, Angew. Chem. Int. Ed. 43, 3333 (2004).CrossRefGoogle Scholar
  19. 19.
    L. J. Ackerman, G. M. Diamond, K. A. Hall, et al., US Patent No. 2008/0188633 (2008).Google Scholar
  20. 20.
    U.-A. Schaper, Synthesis, No. 10, 794 (2981).Google Scholar
  21. 21.
    A.-S. Castanet, F. Colobert, P.-E. Broutin, and M. Obringer, Tetrahedron; Asymm. 13, 659 (2002).CrossRefGoogle Scholar
  22. 22.
    D. K. Dutta, B. Deb, G. Hua, and J. D. Woolins, J. Mol. Catal., A 353–354, 7 (2012).Google Scholar
  23. 23.
    S. E. Tunney and J. K. Stille, Org. Chem. 52, 748 (1987).CrossRefGoogle Scholar
  24. 24.
    M. T. Reetz and A. Gosberg, Tetrahedron: Asymm. 10, 2129 (1999).CrossRefGoogle Scholar
  25. 25.
    APEX2 and SAINT (Bruker AXS, Madison, 2009).Google Scholar
  26. 26.
    G. M. Sheldrick, Acta Crystallogr. A 64, 112 (2008).CrossRefGoogle Scholar
  27. 27.
    M. J. Overett, K. Blann, A. Bollmann, et al., Chem. Commun., No. 5, 622 (2005).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • D. N. Cheredilin
    • 1
    Email author
  • A. M. Sheloumov
    • 1
  • A. A. Senin
    • 1
  • G. A. Kozlova
    • 1
  • V. V. Afanas’ev
    • 1
  • N. B. Bespalova
    • 1
  1. 1.Limited Liability Company “United Research and Development Centre” (LLC “RN-RD Centre”)MoscowRussia

Personalised recommendations