Advertisement

Petroleum Chemistry

, Volume 59, Issue 11, pp 1195–1200 | Cite as

Effect of Nitrogen Bases on the Structure of Primary Asphaltene Clusters and Dynamics of Aggregation of Heavy Oil Fractions

  • Yu. V. LarichevEmail author
  • E. Yu. Kovalenko
  • O. N. Mart’yanov
Article
  • 17 Downloads

Abstract

Using the method of small-angle X-ray scattering (SAXS), the effect of nitrogen-containing compounds on the structure of primary asphaltene clusters and changes in their structure and size characteristics has been studied. It has been shown that the addition of nitrogen bases leads to a partial degradation of the primary aggregates of asphaltenes and the appearance of a larger number of disordered “non-compact” fragments in the solution, thereby altering the dynamics of the entire aggregation process. Nitrogen bases also provoke a change in the type of packing of the primary particles of asphaltenes, facilitating the formation of a looser secondary structure of asphaltene aggregates.

Keywords:

asphaltenes small-angle X-ray scattering nitrogen-containing petroleum bases supramolecular structure 

Notes

FUNDING

The study was supported by the Russian Science Foundation, project no. 15-19-00119.

CONFLICT OF INTEREST

The authors declare that they have no conflict of interest.

REFERENCES

  1. 1.
    I. V. Kozhevnikov, A. L. Nuzhdin, and O. N. Martyanov, J. Supercrit. Fluids 55, 217 (2010).CrossRefGoogle Scholar
  2. 2.
    A. M. Chibiryaev, I. V. Kozhevnikov, A. S. Shalygin, and O. N. Martyanov, Energy Fuels 32, 2117 (2018).CrossRefGoogle Scholar
  3. 3.
    A. M. Chibiryaev, I. V. Kozhevnikov, and O. N. Martyanov, Catal. Today 329, 177 (2019).CrossRefGoogle Scholar
  4. 4.
    K. Akbarzadeh, A. Hammami, A. Kharrat, et al., Oilfield Rev. 19 (2), 22 (2007).Google Scholar
  5. 5.
    O. C. Mullins, Asphaltenes, Heavy Oils and Petroleomics (Springer, New York, 2007).CrossRefGoogle Scholar
  6. 6.
    G. V. Chilingarian and T. F. Yen, Asphaltenes and Asphalts (Elsevier, Amsterdam, 1994).Google Scholar
  7. 7.
    V. Simanzhenkov and R. Idem, Crude Oil Chemistry (CRC, Boca Raton, 2003).CrossRefGoogle Scholar
  8. 8.
    ASTM D6560: Standard Test Method for Determination of Asphaltenes (Heptane Insolubles) in Crude Petroleum and Petroleum Products (ASTM International, West Conshohocken, PA, 2012). http://www.astm.org/Standards/D6560.htm.Google Scholar
  9. 9.
    A. A. Gabrienko, O. N. Martyanov, and S. G. Kazarian, Energy Fuels 29, 7114 (2015).CrossRefGoogle Scholar
  10. 10.
    I. A. Wiehe and R. J. Kennedy, Energy Fuels 14, 56 (2000).CrossRefGoogle Scholar
  11. 11.
    R. Guzmán, J. Ancheyta, F. Trejo, and S. Rodríguez, Fuel 188, 530 (2017).CrossRefGoogle Scholar
  12. 12.
    A. A. Gabrienko, E. V. Morozov, V. Subramani, et al., J. Phys. Chem. C 119, 2646 (2015).CrossRefGoogle Scholar
  13. 13.
    E. V. Morozov and O. N. Martyanov, Appl. Magn. Reson. 47, 223 (2016).CrossRefGoogle Scholar
  14. 14.
    E. V. Morozov, S. N. Trukhan, Yu. V. Larichev, et al., in Proceedings of the 248th National Meeting of the American Chemical Society (San Francisco, 2014), p. 531.Google Scholar
  15. 15.
    A. A. Gabrienko, V. Subramani, O. N. Martyanov, and S. G. Kazarian, Adsorpt. Sci. Technol. 32, 243 (2014).CrossRefGoogle Scholar
  16. 16.
    E. Y. Sheu, Asphaltenes, Heavy Oils and Petroleomics, Ed. by O. C. Mullins, E. Y. Sheu, A. Hammami, and A. G. Marshall (Springer, New York, 2007), p. 353.Google Scholar
  17. 17.
    Yu. V. Larichev, A. V. Nartova, and O. N. Martyanov, Adsorpt. Sci. Technol. 34, 244 (2016).CrossRefGoogle Scholar
  18. 18.
    K. Gawrys, G. Blankenship, and P. Kilpatrick, Langmuir 22, 4487 (2006).CrossRefGoogle Scholar
  19. 19.
    K. Gawrys and P. Kilpatrick, Thin Solid Films 288, 325 (2005).Google Scholar
  20. 20.
    M. Hoepfner, C. Vilas Boas Favero, N. Haji-Akbari, and H. S. Fogler, Langmuir 29, 8799 (2013).CrossRefGoogle Scholar
  21. 21.
    J. Eyssautier, D. Espinat, J. Gummel, et al., Energy Fuels 26, 2680 (2012).CrossRefGoogle Scholar
  22. 22.
    F. V. Tuzikov, Yu. V. Larichev, L. S. Borisova, et al., Pet. Chem. 51, 281 (2011).CrossRefGoogle Scholar
  23. 23.
    O. N. Mart’yanov, Yu. V. Larichev, E. V. Morozov, et al., Usp. Khim. 86, 999 (2017).CrossRefGoogle Scholar
  24. 24.
    J. Eyssautier, P. Levitz, D. Espinat, et al., J. Phys. Chem. B 115, 6827 (2011).CrossRefGoogle Scholar
  25. 25.
    A. A. Gabrienko, O. N. Martyanov, and S. G. Kazarian, Energy Fuels 30, 4750 (2016).CrossRefGoogle Scholar
  26. 26.
    M. A. Anisimov, Yu. M. Ganeeva, E. E. Gorodetskii, et al., Energy Fuels 28, 6200 (2014).CrossRefGoogle Scholar
  27. 27.
    D. V. Nelyubov, L. P. Semikhina, D. A. Vazhenin, and I. A. Merkul’ev, Pet. Chem. 57, 203 (2017).CrossRefGoogle Scholar
  28. 28.
    I. V. Prozorova, Yu. V. Loskutova, E. Yu. Kovalenko, et al., Izv. Vyssh. Uchebn. Zaved., Neft’ Gaz, No. 3, 96 (2009).Google Scholar
  29. 29.
    E. Yu. Kovalenko, T. A. Sagachenko, and R. S. Min, Izv. Tomsk. Politekh. Univ., Inzh. Georesurs. 327, 119 (2016).Google Scholar
  30. 30.
    P. V. Konarev, M. V. Petoukhov, V. V. Volkov, and D. I. Svergun, J. Appl. Crystallogr. 39, 277 (2006).CrossRefGoogle Scholar
  31. 31.
    O. C. Mullins, Energy Fuels 24, 2179 (2010).CrossRefGoogle Scholar
  32. 32.
    Yu. V. Larichev and O. N. Martyanov, J. Pet. Sci. Eng. 165, 575 (2018).Google Scholar
  33. 33.
    Svergun, D.I. and Feigin, L.A., Small-Angle X-ray and Neutron Scattering (Nauka, Moscow, 1986).Google Scholar
  34. 34.
    H. D. Bale and P. W. Schmidt, Phys. Rev. Lett. 53, 596 (1984).CrossRefGoogle Scholar
  35. 35.
    M. L. Chacon-Patino, S. M. Rowland, and R. P. Rodgers, Energy Fuels 31, 13509 (2017).CrossRefGoogle Scholar
  36. 36.
    F. Alvarez-Ramírez and Y. Ruiz-Morales, Energy Fuels 27, 1791 (2013).CrossRefGoogle Scholar
  37. 37.
    J. Wang and A. L. Ferguson, J. Phys. Chem. B 120, 8016 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • Yu. V. Larichev
    • 1
    • 2
    Email author
  • E. Yu. Kovalenko
    • 3
  • O. N. Mart’yanov
    • 1
    • 2
  1. 1.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk National Research State UniversityNovosibirskRussia
  3. 3.Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of SciencesTomskRussia

Personalised recommendations