Petroleum Chemistry

, Volume 59, Issue 11, pp 1226–1234 | Cite as

A Study of Platinum Catalysts Based on Ordered Al–МСМ-41 Aluminosilicate and Natural Halloysite Nanotubes in Xylene Isomerization

  • A. P. GlotovEmail author
  • M. I. Artemova
  • N. R. Demikhova
  • E. M. Smirnova
  • E. V. Ivanov
  • P. A. Gushchin
  • S. V. Egazar’yants
  • V. A. Vinokurov


Hierarchical composite materials based on ordered aluminosilicates of the Al–MCM-41 type and halloysite nanotubes (HNTs) with different Al–MCM-41/halloysite weight ratios have been synthesized and studied as components of supports of platinum catalysts for the isomerization of the C8 aromatic fraction of reforming. At each synthesis stage, the materials have been characterized by transmission electron microscopy (TEM), low-temperature nitrogen adsorption, X-ray fluorescence analysis, X-ray diffraction (XRD) analysis, and temperature-programmed desorption of ammonia (NH3-TPD). Catalyst systems with an Al–MCM-41/HNT weight ratio of 90 : 10 wt % have shown the highest efficiency in xylene isomerization providing a higher conversion of ethylbenzene and m-xylene than the conversion provided by the HNT-based catalyst. It has been found that the synthesized catalysts exhibit a higher selectivity for the target product of the process—p-xylene—than the selectivity of a commercial counterpart in a temperature range of 360–440°C. The maximum p-xylene selectivity (70%) has been achieved in the presence of a Pt/Al–MCM-41/HNT(90 : 10)/Al2O3 catalyst at 360°C.


halloysite aluminosilicates MCM-41 isomerization p-xylene mesoporous materials 



This work was supported by the Russian Science Foundation, project no. 19-19-00711.


The authors declare that there is no conflict of interest regarding the publication of this manuscript.


  1. 1.
    E. A. Karakhanov, A. L. Maksimov, A. V. Zolotukhina, and V. A. Vinokurov, Russ. J. Appl. Chem. 91, 707 (2018).CrossRefGoogle Scholar
  2. 2.
    A. Corma, F. Llopis, and J. B. Monton, Stud. Surf. Sci. Catal. 75, 1145 (1993).CrossRefGoogle Scholar
  3. 3.
    M. Guisnet, N. S. Gnep, and S. Morin, Microporous Mesoporous Mater. 35–36, 47 (2000).CrossRefGoogle Scholar
  4. 4.
    A. P. Glotov, E. A. Roldugina, M. I. Artemova, et al., Russ. J. Appl. Chem. 91, 1353 (2018).CrossRefGoogle Scholar
  5. 5.
    R. D. Chirico, S. E. Knipmeyer, A. Nguyen, and W. V. Steele, J. Chem. Eng. Data 42, 784 (1997).CrossRefGoogle Scholar
  6. 6.
    K. Toch, J. W. Thybaut, B. D. Vandegehuchte, et al., Appl. Catal., A 425–426, 130 (2012).Google Scholar
  7. 7.
    L. B. Young, S. A. Butter, and W. W. Kaeding, J. Catal. 76, 418 (1982).CrossRefGoogle Scholar
  8. 8.
    C. R. Marcilly, Top. Catal. 13, 357 (2000).CrossRefGoogle Scholar
  9. 9.
    E. Guillon, S. Lacombe, T. Sozinho, et al., Oil Gas Sci. Technol. 64, 731 (2009).CrossRefGoogle Scholar
  10. 10.
    C. Baerlocher and L. B. McCusker, Atlas of Zeolite Framework Types (Elsevier, Amsterdam, 2007), p. 398.Google Scholar
  11. 11.
    S. Morin, P. Ayrault, S. El Mouahid, et al., Appl. Catal., A 159, 317 (1997).Google Scholar
  12. 12.
    C. Kresge, J. Vartuli, W. Roth, and M. Leonowicz, Stud. Surf. Sci. Catal. 148, 53 (2004).CrossRefGoogle Scholar
  13. 13.
    Y. P. Bernal, J. Alvarado, R. L. Juarez, et al., Optik 185, 429 (2019).CrossRefGoogle Scholar
  14. 14.
    J. Čejka, A. Krejčí, N. Žilková, et al., Microporous Mesoporous Mater. 44, 499 (2001).CrossRefGoogle Scholar
  15. 15.
    V. A. Vinokurov, A. V. Stavitskaya, Ya. A. Chudakov, et al., Pure Appl. Chem. 90, 825 (2018).CrossRefGoogle Scholar
  16. 16.
    S. Kadi, S. Lellou, K. Marouf-Khelifa, et al., Microporous Mesoporous Mater. 158, 47 (2012).CrossRefGoogle Scholar
  17. 17.
    Y. Lvov, W. Wang, L. Zhang, and R. Fakhrullin, Adv. Mater. 28, 1227 (2016).CrossRefGoogle Scholar
  18. 18.
    V. A. Vinokurov, A. P. Glotov, Ya. A. Chudakov, et al., Ind. Eng. Chem. Res. 56, 14043 (2017).CrossRefGoogle Scholar
  19. 19.
    V. A. Vinokurov, A. V. Stavitskaya, Ya. A. Chudakov, et al., Sci. Technol. Adv. Mater. 18, 147 (2017).CrossRefGoogle Scholar
  20. 20.
    A. Glotov, N. Levshakov, A. Stavitskaya, et al., Chem. Commun., No. 55, 5507 (2019).Google Scholar
  21. 21.
    K.-Y. Kwak, M.-S. Kim, D.-W. Lee, et al., Fuel 137, 230 (2014).CrossRefGoogle Scholar
  22. 22.
    M. Farshadi and C. Falamaki, Chin. J. Chem. Eng. 26, 116 (2018).CrossRefGoogle Scholar
  23. 23.
    A. Glotov, N. Levshakov, A. Vutolkinaet al., Catal. Today 329, 156 (2019).CrossRefGoogle Scholar
  24. 24.
    A. Corma and E. Sastre, J. Catal. 129, 177 (1991).CrossRefGoogle Scholar
  25. 25.
    S. Morin, P. Ayrault, S. El Mouahid, et al., Appl. Catal., A 159, 317 (1997).Google Scholar
  26. 26.
    Y. Zhou, H. Liu, Y. Li, et al., Chin. J. Catal. 34, 1429 (2013).CrossRefGoogle Scholar
  27. 27.
    C. Fernandez, I. Stan, J. P. Gilson, et al., Chem.-Eur. J. 16, 6224 (2010).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. P. Glotov
    • 1
    Email author
  • M. I. Artemova
    • 1
  • N. R. Demikhova
    • 1
  • E. M. Smirnova
    • 1
  • E. V. Ivanov
    • 1
  • P. A. Gushchin
    • 1
  • S. V. Egazar’yants
    • 2
  • V. A. Vinokurov
    • 1
  1. 1.Gubkin Russian State University of Oil and GasMoscowRussia
  2. 2.Moscow State UniversityMoscowRussia

Personalised recommendations