Advertisement

Petroleum Chemistry

, Volume 59, Issue 8, pp 822–830 | Cite as

Overview of the State-of-the-Art on Using Alumina-Based Nanoporous Membranes for Adsorptive Enrichment and Phase Separation

  • E. N. MuratovaEmail author
  • E. V. Maraeva
  • S. S. Nalimova
  • N. V. Permyakov
  • V. A. Moshnikov
Article
  • 10 Downloads

Abstract

The problem of separation of various components of gases and liquids with the use of nanostructured porous alumina membranes has been considered. An analysis of the current state of the problem of the permeation of gases and liquids through such membranes is presented.

Notes

REFERENCES

  1. 1.
    A. Tiwary and J. Colls, Air Pollution: Measurement, Modelling and Mitigation (CRC, Boca Raton, 2009).Google Scholar
  2. 2.
    W. M. Deen, AIChE J. 33, 1409 (1987).CrossRefGoogle Scholar
  3. 3.
    C. R. Martin, Chem. Mater. 8, 1739 (1996).CrossRefGoogle Scholar
  4. 4.
    V. A. Moshnikov, I. E. Gracheva, V. V. Kuznezov, et al., J. Non-Cryst. Solids 356, 2020 (2010).CrossRefGoogle Scholar
  5. 5.
    I. E. Grachova, A. I. Maksimov, and V. A. Moshnikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 761 (2009).CrossRefGoogle Scholar
  6. 6.
    V. V. Luchinin, V. A. Moshnikov, E. N. Muratova, and R. Sh. Samigullin, J. Phys.: Conf. Ser. 586, 012008 (20150.Google Scholar
  7. 7.
    E. N. Muratova, Biotekhnosfera, No. 6, 35 (2014).Google Scholar
  8. 8.
    E. N. Muratova, Yu. M. Spivak, V. A. Moshnikov, et al., Fiz. Khim. Stekla 39, 473 (2013).Google Scholar
  9. 9.
    T. M. Zimina, E. N. Muratova, Yu. M. Spivak, et al., Nano Mikrosist. Tekh., No. 12, 15 (2012).Google Scholar
  10. 10.
    T. M. Zimina, A. V. Solov’ev, V. V. Luchinin, et al., Nano Mikrosist. Tekh., No. 12, 19 (2013).Google Scholar
  11. 11.
    V. V. Luchinin, E. N. Muratova, and A. A. Shemukhin, Nano Mikrosist. Tekh., No. 12, 39 (2013).Google Scholar
  12. 12.
    E. N. Muratova, V. V. Luchinin, V. A. Moshnikov, et al., Glass Phys. Chem. 43, 163 (2017).CrossRefGoogle Scholar
  13. 13.
    S. Y. Yang, I. Ryu, H. Y. Kim, et al., Adv. Mater. 18, 709 (2006).CrossRefGoogle Scholar
  14. 14.
    V. V. Volkov, B. V. Mchedlishvili, V. I. Roldugin, et al., Nanotechnol. Russ. 3, 656 (2008).CrossRefGoogle Scholar
  15. 15.
    P. Vandezande, L. E. M. Gevers, and I. F. J. Vankelecom, Chem. Soc. Rev. 37, 365 (2008).CrossRefGoogle Scholar
  16. 16.
    Aminullah, A. K. Kasi, J. K. Kasi, and M. Bokhari, Microelectron. Eng. 187, 95 (2018).CrossRefGoogle Scholar
  17. 17.
    C. C. Striemer, T. R. Gaborski, J. L. McGrath, and P. M. Fauchet, Nature 445, 749 (2007).CrossRefGoogle Scholar
  18. 18.
    J. L. Snyder, A. Clark, Jr., D. Z. Fang, et al., J. Membr. Sci. 369, 119 (2011).CrossRefGoogle Scholar
  19. 19.
    M. A. Noginov, Y. A. Barnakov, H. Li, et al., in Photonic Metamaterials and Plasmonics (Optical Society of America, Tucson, 2010).Google Scholar
  20. 20.
    J. H. Zhou, J. P. He, G. W. Zhao, et al., Trans. Nonferrous Met. Soc. China 17, 82 (2007).CrossRefGoogle Scholar
  21. 21.
    K. M. Alam, A. P. Singh, S. C. Bodepudi, and S. Pramanik, Surf. Sci. 605,441 (2011).CrossRefGoogle Scholar
  22. 22.
    E. N. Muratova, Candidate’s Dissertation in Engineering (St. Petersburg, 2014).Google Scholar
  23. 23.
    S. A. Gavrilov and A. N. Belov, Electrochemical Processes in Micro- and Nanoelectronics Technology (Vysshee Obrazovanie, Moscow, 2009) [in Russian].Google Scholar
  24. 24.
    I. E. Gracheva, V. A. Moshnikov, S. S. Karpova, and E. V. Maraeva, J. Phys.: Conf. Ser. 291, 012017 (2011).Google Scholar
  25. 25.
    E. V. Maraeva, A. A. Bobkov, A. I. Maximov, et al., J. Phys.: Conf. Ser. 643, 012116 (2015).Google Scholar
  26. 26.
    R. Dittmeyer, K. Svajda, and M. Reif, Top. Catal. 29, 3 (2004).CrossRefGoogle Scholar
  27. 27.
    E. M. Vrijenhoek, S. Hong, and M. Elimelech, J. Membr. Sci. 188, 115 (2001).CrossRefGoogle Scholar
  28. 28.
    S. Widodo, D. Ariono, and I. G. Wenten, Mater. Sci. Eng. 285, 012008 (2018).Google Scholar
  29. 29.
    H. U. Osmanbeyoglu, T. B. Hur, and H. K. Kim, J. Membr. Sci. 343, 1 (2009).CrossRefGoogle Scholar
  30. 30.
    M. Hasan, A. K. Kasi, J. K. Kasi, et al., Adv. Mater. Res. Trans Tech. Publ. 550, 2046 (2012).Google Scholar
  31. 31.
    A. C. Attaluri, Z. Huang, A. Belwalkar, et al., ASAIO J. 55, 217 (2009).CrossRefGoogle Scholar
  32. 32.
    A. K. Kasi, J. K. Kasi, M. Hasan, et al., Adv. Mater. Res. Trans Tech. Publ. 550, 2040 (2012).Google Scholar
  33. 33.
    H. Liu L. L. Zhu, Y. F. Xu, et al., J. Nano Res. 45, 84 (2017).Google Scholar
  34. 34.
    R. Charles, Chem. Mater. 8, 1739 (1996).CrossRefGoogle Scholar
  35. 35.
    P. Yuanzhe and K. Hasuck, J. Nanosci. Nanotechnol. 9, 2215 (2009).CrossRefGoogle Scholar
  36. 36.
    A. Yamaguchi, F. Uejo, T. Yoda, et al, Nat. Mater. 3, 337 (2004).CrossRefGoogle Scholar
  37. 37.
    A. Kovacs and U. Mescheder, Sens. Actuators, B 175, 179 (2012).CrossRefGoogle Scholar
  38. 38.
    R. M. A. Roque-Malherbe, Adsorption and Diffusion in Nano porous Materials (CRC, Boca Raton, 2007).CrossRefGoogle Scholar
  39. 39.
    W. Jitschin, F. Sharipov, and R. Lachenmann, Wutz Handbuch Vakuumtechnik, Ed. by K. Jousten (Vieweg + Teubner, Wiesbaden, 2009), p. 1056.Google Scholar
  40. 40.
    E. N. Muratova and L. B. Matyushkin, Smart Nanocomposites 4, 25 (2013).Google Scholar
  41. 41.
    L. B. Matyushkin, E. N. Muratova, Yu. M. Spivak, et al., J. Phys.: Conf. Ser. 572, 012е031 (2014).Google Scholar
  42. 42.
    L. B. Matyushkin, E. N. Muratova, and M. F. Panov, Micro Nano Lett. 12, 100 (2017).CrossRefGoogle Scholar
  43. 43.
    K. Keizer, R. J. R. Uhlhorn, and A. J. Burggraaf, J. Membr. Sci. 39, 285 (1988).CrossRefGoogle Scholar
  44. 44.
    S. Liguori, A. Iulianelli, F. Dalena, et al., Membranes 4, 143 (2014).CrossRefGoogle Scholar
  45. 45.
    A. Li, W. Liang, and R. Hughes, Thin Solid Films 350, 106 (1999).CrossRefGoogle Scholar
  46. 46.
    X. Liu, P. A. Christensen, S. M. Kelly, et al., Membranes 3, 406 (2013).CrossRefGoogle Scholar
  47. 47.
    S. S. Karpova, M. E. Kompan, A. I. Maksimov, et al., Fundamentals of Hydrogen Energy (St. Peterburgsk Gos. Elektrotekh. Univ. LETI, St. Petersburg, 2011) [in Russian].Google Scholar
  48. 48.
    Z. Yang, Y. Zhang, W. Ding, et al., J. Nat. Gas Chem. 18, 407 (2009).CrossRefGoogle Scholar
  49. 49.
    A. Ryzhikov, M. Labeau, and A. Gaskov, Sens. Actuators, B 109, 91 (2005).CrossRefGoogle Scholar
  50. 50.
    L. Liao, H. B. Lu, J. C. Li, et al., J. Phys. Chem. C 11, 1900 (2007).CrossRefGoogle Scholar
  51. 51.
    J. K. Choi, I. S. Hwang, S. J. Kimet al., Sens. Actuators, B 150, 191 (2010).CrossRefGoogle Scholar
  52. 52.
    N. V. Hieu, V. V. Quang, N. D. Ho, and D. Kim, Curr. Appl. Phys. 11, 657 (2011).CrossRefGoogle Scholar
  53. 53.
    F. N. Meng, X. P. Di, H. W. Dong, et al., Sens. Actuators, B 182, 197 (2013).CrossRefGoogle Scholar
  54. 54.
    Q. Hao, L. Li, X. Yin, et al., Mater. Sci. Eng., B 176, 600 (2011).CrossRefGoogle Scholar
  55. 55.
    N. Singh, R. K. Gupta, and P. S. Lee, Appl. Mater. Interfaces 3, 2246 (2011).CrossRefGoogle Scholar
  56. 56.
    Z. Guo, M. Li, and J. Liu, Nanotechnology 19, 245611 (2008).CrossRefGoogle Scholar
  57. 57.
    M. B. Rahmani, S. H. Keshmiri, J. Yu, et al., Sens. Actuators, B 145, 13 (2010).CrossRefGoogle Scholar
  58. 58.
    R. Jalal, E. K. Goharshadi, M. Abareshi, et al., Mater. Chem. Phys. 121, 198 (2010).CrossRefGoogle Scholar
  59. 59.
    M. Ramani, S. Ponnusamy, and C. Muthamizhchelvan, Mater. Sci. Eng., C 32, 2381 (2012).CrossRefGoogle Scholar
  60. 60.
    A. Stanković, S. Dimitrijević, and D. Uskoković, Colloids Surf., B 102, 21 (2013).CrossRefGoogle Scholar
  61. 61.
    N. Talebian, S. M. Amininezhad, and M. Doudi, J. Photochem. Photobiol., A 120, 66 (2013).CrossRefGoogle Scholar
  62. 62.
    J. Luo, S. Y. Ma, A. M. Sun, et al., Mater. Lett. 137, 17 (2014).CrossRefGoogle Scholar
  63. 63.
    X. Qu, M. Wang, W. Sun, and R. Yang, J. Mater. Sci.: Mater. Electron. 28, 14702 (2017).Google Scholar
  64. 64.
    D. Li, J. Hu, F. Fan, et al., J. Alloys Compd. 539, 205 (2012).CrossRefGoogle Scholar
  65. 65.
    H.-U. Lee, K. Ahn, S.-J. Lee, et al., Appl. Phys. Lett. 98, 193е114 (2011).CrossRefGoogle Scholar
  66. 66.
    P. Tiwana, P. Docampo, M. B. Johnston, et al., ACS Nano 5, 5158 (2011).CrossRefGoogle Scholar
  67. 67.
    Y. Xie, Y. He, P. L. Irwin, et al., Appl. Environ. Microbiol. 77, 2325 (2011).CrossRefGoogle Scholar
  68. 68.
    N. M. Flores, U. Pal, R. Galeazzi, and A. Sandoval, RSC Adv. 4, 41099 (2014).Google Scholar
  69. 69.
    R. Artzi-Gerlitz, K. D. Benkstein, D. L. Lahr, et al., Sens. Actuators, B 136, 257 (2009).CrossRefGoogle Scholar
  70. 70.
    G. Gorokh, A. Mozalev, D. Solovei, et al., Electrochim. Acta 52, 1771 (2006).CrossRefGoogle Scholar
  71. 71.
    X. Lv, G. Hu, J. Tang, and Y. Wang, J. Mater. Sci.: Mater. Electron. 28, 14 163 (2017).Google Scholar
  72. 72.
    Z. Wang and H. L. Li, Appl. Phys. A 74, 201 (2002).CrossRefGoogle Scholar
  73. 73.
    S. Yue, Z. Yan, Y. Shi, and G. Ran, Mater. Lett. 98, 246 (2013).CrossRefGoogle Scholar
  74. 74.
    A. Toikka, Monatsh. Chem. 149, 467 (2018).CrossRefGoogle Scholar
  75. 75.
    C. Yang, G. Zhang, N. Xu, and J. Shi, J. Membr. Sci. 142, 235 (1998).CrossRefGoogle Scholar
  76. 76.
    V. G. Dzyubenko, Voda Vodn. Tekhnol., No. 7, 10 (2005).Google Scholar
  77. 77.
    A. Dafinov, R. Garcia-Valls, and J. Font, J. Membr. Sci. 196, 69 (2002).CrossRefGoogle Scholar
  78. 78.
    K. A. Khan, J. K. Kasi, N. Afzulpurkar, et al., in Proceedings of the 3rd International Conference on Communications and Electronics (ICCE 2010), p. 98.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. N. Muratova
    • 1
    Email author
  • E. V. Maraeva
    • 1
  • S. S. Nalimova
    • 1
  • N. V. Permyakov
    • 1
  • V. A. Moshnikov
    • 1
  1. 1.Saint Petersburg Electrotechnical University “LETI”St. PetersburgRussia

Personalised recommendations