Petroleum Chemistry

, Volume 59, Issue 8, pp 831–837 | Cite as

Use of Synthetic and Natural Zeolites for Fabricating Immobilized Olefin Polymerization Catalysts and Polyolefin-Based Composite Materials

  • I. N. MeshkovaEmail author
  • T. M. Ushakova
  • V. G. Grinev
  • V. A. Nikashina
  • L. A. Novokshonova


Synthetic zeolites differing in composition, framework parameters, and exchange cations that balance charges of aluminum–oxygen framework tetrahedra and natural finely divided clinoptilolite-containing tuffs have been used for heterogenization of metal complex catalysts. In the reaction of incomplete hydrolysis of alkylaluminum compounds with water contained on the surface and in the intracrystalline cavities of synthetic zeolites, bonded alkylalumoxanes have been synthesized and further used to create immobilized zirconocene olefin polymerization catalysts, close in activity to similar homogeneous Zr-cene systems, and heterogenized vanadium catalysts. Based on finely divided natural zeolites and ultrahigh-molecular-weight polyethylene, the following materials have been fabricated using the polymerization filling method: a composite that combines high wear-resistant properties with a low friction coefficient, has good strain–stress characteristics, and can be used for manufacturing friction units under load; an organomineral sorbent suitable for solving environmental problems associated with the treatment of natural water for the removal of cesium and strontium radionuclides, heavy metals, and ammonium.



  1. 1.
    F. Ciardelli, A. Altomare, and G. Conti, Makromol. Chem., Macromol. Symp. 80, 29 (1994).CrossRefGoogle Scholar
  2. 2.
    Y. S. Woo, T. K. Ko, and T. K. Han, Macromol. Rapid Commun. 16, 489 (1995).CrossRefGoogle Scholar
  3. 3.
    I. N. Meshkova, T. M. Ushakova, and N. M. Gultseva, in Proceedings of International Symposium “ZEOLITE-95” (Sofia, 1995), p. 238.Google Scholar
  4. 4.
    M. V. Margues, J. L. F. Henrigues, and S. M. C. Monteiro, Macromol. Chem. Phys. 198, 3709 (1997).CrossRefGoogle Scholar
  5. 5.
    M. Michelotti, A. Altomare, F. Ciardelli, and E. Roland, J. Mol. Catal., A 129, 241 (1998).Google Scholar
  6. 6.
    M. Michelotti, G. Arribas, S. Bronco, and A. Altomare, J. Mol. Catal., A 152, 167 (2000).Google Scholar
  7. 7.
    I. N. Meshkova, T. M. Ushakova, and L. A. Novokshonova, Polym. Bull. 44, 461 (2000).CrossRefGoogle Scholar
  8. 8.
    V. I. Costa Vaya, P. G. Belelli, J. H. Z. Santos, et al., J. Catal. 204, 1 (2001).CrossRefGoogle Scholar
  9. 9.
    Y. S. Ko and Y. S. Woo, Eur. Polym. J. 39, 1553 (2003).CrossRefGoogle Scholar
  10. 10.
    C. Favero, M. L. Mignoni, R. F. de Souza, and R. Bernardo-Gusmão, J. Braz. Chem. Soc. 26, 1405 (2015).Google Scholar
  11. 11.
    A. K. Nadgaryan, V. A. Zlobina, L. V. Lon, and S. S. Karagyan, Plast. Massy, No. 9, 69 (1989).Google Scholar
  12. 12.
    G. V. Tsitsishvili, T. S. Andronikashvili, G. N. Kirov, and L. D. Filizova, Natural Zeolites (Khimiya, Moscow, 1985) [in Russian].Google Scholar
  13. 13.
    Bulgarian Inventor’s Certificate No. 33 512, 1982.Google Scholar
  14. 14.
    G. F. Blokh and S. E. Rapchinskaya, Zeolites in Rubber Industry (TsNIITENEFTEKhim, Moscow, 1970) [in Russian].Google Scholar
  15. 15.
    P. I. Braude and I. G. Induchnyi, in Proceedings of Conference on Natural Zeolites in Russia (Novosibirsk, 1992), book 1, p. 33 [in Russian].Google Scholar
  16. 16.
    P. M. Henry, J. Polym. Sci. 36, 3 (1959).CrossRefGoogle Scholar
  17. 17.
    V. A. Nikashina, N. K. Galkina, I. V. Komarova, et al., Natural Zeolites ’93: Occurrence, Properties, Use, Ed. by D. W. Ming and F. A. Mumpton (Brockport, New York, 1995), p. 289.Google Scholar
  18. 18.
    J. C. W. Chien and D. He, J. Polym. Sci., Part A: Polym. Chem. 29, 1603 (1991).CrossRefGoogle Scholar
  19. 19.
    K. Soga and M. Kaminaka, Makromol. Chem. Rapid Commun. 13, 221 (1992).CrossRefGoogle Scholar
  20. 20.
    W. Kaminsky and F. Renner, Makromol. Chem. Rapid Commun. 14, 239 (1993).CrossRefGoogle Scholar
  21. 21.
    M. C. Sacci, D. Zucchi, I. Tritto, and P. Locatelli, Makromol. Chem. Rapid Commun. 16, 581 (1995).CrossRefGoogle Scholar
  22. 22.
    M. Michelotti, G. Arribas, S. Bronco, and A. Altomare, J. Mol. Catal. 252, 167 (2000).CrossRefGoogle Scholar
  23. 23.
    USSR Inventor’s Certificate No. 1066193, Byull. Izobret., No. 11 (1985).Google Scholar
  24. 24.
    L. A. Novokshonova, N. Yu. Kovaleva, T. M. Ushakova, et al., Kinet. Catal. 46, 853 (2005).CrossRefGoogle Scholar
  25. 25.
    I. N. Meshkova, T. M. Ushakova, T. A. Ladygina, et al., Polym. Bull. 5–6, 461 (2000).CrossRefGoogle Scholar
  26. 26.
    I. N. Meshkova, T. M. Ushakova, T. A. Ladygina, and L. A. Novokshonova, Polym. Sci., Ser. A 44, 1310 (2002).Google Scholar
  27. 27.
    I. N. Meshkova, O. I. Kudinova, N. Yu. Kovaleva, et al., Polym. Sci., Ser. B 51, 401 (2009).CrossRefGoogle Scholar
  28. 28.
    L. A. Novokshonova and I. N. Meshkova, Polym. Sci., Ser. A 36, 1357 (1994).Google Scholar
  29. 29.
    T. M. Ushakova, I. N. Meshkova, N. G. Guruli, et al., Polym. Sci., Ser. A 40, 658 (1998).Google Scholar
  30. 30.
    I. N. Meshkova, V. A. Nikashina, V. G. Grinev, et al., RU Patent No. 22 848 57 (2005).Google Scholar
  31. 31.
    I. N. Meshkova, V. A. Nikashina, T. M. Ushakova, et al., Polym. Sci., Ser. B 47, 261 (2005).Google Scholar
  32. 32.
    V. A. Nikashina, A. N. Streletskii, I. V. Kolbanev, et al., Inorg. Mater., 47, 1341 (2011).CrossRefGoogle Scholar
  33. 33.
    V. A. Nikashina, A. N. Streletsky, I. V. Kolbanev, et al., Clay Miner. 46, 329 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • I. N. Meshkova
    • 1
    Email author
  • T. M. Ushakova
    • 1
  • V. G. Grinev
    • 1
  • V. A. Nikashina
    • 2
  • L. A. Novokshonova
    • 1
  1. 1.Semenov Institute of Chemical Physics, Russian Academy of SciencesMoscowRussia
  2. 2.Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of SciencesMoscowRussia

Personalised recommendations