Petroleum Chemistry

, Volume 59, Issue 8, pp 860–869 | Cite as

Dealumination of MOR Zeolites with Different Crystal Morphologies

  • E. E. KnyazevaEmail author
  • A. I. Nikiforov
  • D. A. Zasukhin
  • L. I. Rodionova
  • I. I. Ivanova


The process of dealumination of mordenites differing in morphology and crystal size obtained under identical conditions from reaction mixtures of similar composition has been studied. Parameters that have been chosen to change the morphology and crystal size are the dry matter concentration in the reaction mixture, the pH of the reaction mixture, the crystallization time, the presence of crystalline seeds, and agitation during the synthesis. Dealumination has been performed by heat treatment at 700°C followed by acid treatment. It has been shown that the stability of the mordenite crystal framework to dealumination depends on the thickness of the primary needle crystal, which forms the basis of large zeolite crystals, not on the size of the zeolite crystal as a whole. With a decrease in the average needle crystal thickness from 250 to 90 nm, the Si/Al molar ratio in the crystal lattice, determined from 29Si NMR data, increases from 6.8 to 9.5. The dealumination is accompanied by a change in the texture of large mordenite crystals associated with a decrease in the packing density of the primary needles.


mordenite crystal morphology and size dealumination primary needle crystals texture extra-framework fragments 



The work was supported by the Ministry of Education and Science of the Russian Federation (unique project identifier RFMEF161017X0009).


  1. 1.
    C. S. Cundy and P. A. Cox, Chem. Rev. 103, 663 (2003).CrossRefGoogle Scholar
  2. 2.
    P. Simoncic and T. Armbruster, Am. Mineral. 89, 421 (2004).CrossRefGoogle Scholar
  3. 3.
    R. W. Aitken and I. M. Keen, US Patent No. 3 531 243 (1970).Google Scholar
  4. 4.
    M. L. Pavlov, R. A. Basimova, O. S. Travkina, et al., Oil & Gas Business 2, 459 (2012).Google Scholar
  5. 5.
    Y. Yuan, L. Wang, H. Liu, et al., Chin. J. Catal. 36, 1910 (2015).CrossRefGoogle Scholar
  6. 6.
    T. D. Todorova and Yu. A. Kalvachev, Bulg. Chem. Commun. 47, 409 (2015).Google Scholar
  7. 7.
    V. R. Chumbhale, A. J. Chandwadkar, and B. S. Rao, Zeolites 12, 63 (1992).CrossRefGoogle Scholar
  8. 8.
    R. Giudici, H. W. Kouwenhoven, and R. Prins, Appl. Catal., A 203, 101 (2000).Google Scholar
  9. 9.
    S. Ban, A. N. C. van Laak, J. Landers, et al., J. Phys. Chem. C 114, 2056 (2010).CrossRefGoogle Scholar
  10. 10.
    Y. Yang, J. Ding, Ch. Xu, et al., J. Catal. 325, 101 (2015).CrossRefGoogle Scholar
  11. 11.
    J. Barras, J. Klinowski, and D. W. McComb, J. Chem. Soc., Faraday Trans. 90, 3719 (1994).CrossRefGoogle Scholar
  12. 12.
    A. Coloma, F. J. Rodriguez, J. E. Druna, et al., J. Chil. Chem. Soc. 59, 2409 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. E. Knyazeva
    • 1
    Email author
  • A. I. Nikiforov
    • 1
  • D. A. Zasukhin
    • 1
  • L. I. Rodionova
    • 1
  • I. I. Ivanova
    • 1
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia

Personalised recommendations