Advertisement

Petroleum Chemistry

, Volume 59, Issue 8, pp 870–874 | Cite as

Decationation of MFI Zeolite with the Use of Direct-Current Electric Field

  • A. D. BudnyakEmail author
  • S. P. Bedenko
  • R. M. Talyshinskii
  • V. F. Tret’yakov
  • A. M. Ilolov
Article
  • 18 Downloads

Abstract

A method is proposed for converting an MFI zeolite from the Na- to the H-form using an electric field in a dc electrodialyzer at low voltages in the range of 3 to 12 V. According to X-ray fluorescence analysis, the degree of exchange is 100%; the sodium content in the zeolite was 0.05 wt % before decationation and became 0.00 wt % after it, with the zeolite crystal lattice and morphology remaining unchanged. The catalytic activity of the zeolite before and after the decationation procedure has been tested in the ethanol reforming reaction. The results showing the side to which the proton directs the ethanol reforming reaction are presented. The catalytic testing of the decationated zeolite has shown that the yield of liquid organic products increased to 19.0%, with the proportion of aromatic products being 72.0%.

Notes

ACKNOWLEDGMENTS

This work was performed using the equipment of the Shared Research Center of  TIPS RAS.

FUNDING

This work was carried out within the State Program of TIPS RAS.

REFERENCES

  1. 1.
    O. V. Krylov, Heterogeneous Catalysis (Akademkniga, Moscow, 2004) [in Russian].Google Scholar
  2. 2.
    L. M. Koval’, L. L. Korobitsyna, and A. V. Vos’-merikov, Synthesis and Physicochemical Properties of High-Silica Zeolites (TGU, Tomsk, 2001) [in Russian].Google Scholar
  3. 3.
    A. A. Lamberov, A. G. Liakumovich, S. I. Agadzhanyan, and V. N. Doronin, RU Patent No. 2088331 (1997).Google Scholar
  4. 4.
    A. Yu. Pilipenko, Candidate’s Dissertation in Chemistry (Saratov, 2017) [in Russian].Google Scholar
  5. 5.
    Y. Furumoto, N. Tsunoji, Y. Ide, et al., Appl. Catal., A 417–418, 137 (2012).Google Scholar
  6. 6.
    K. K. Ramasamy, H. Zhang, J. Sun, and Y. Wang, Catal. Today 238, 103 (2014).CrossRefGoogle Scholar
  7. 7.
    X. Niu, J. Gao, Q. Miao, et al., Microporous Mesoporous Mater. 197, 252 (2014).CrossRefGoogle Scholar
  8. 8.
    P. He, R. Gatip, M. Yung, et al., Appl. Catal., B 211, 275 (2017).CrossRefGoogle Scholar
  9. 9.
    H. Coqueblin, A. Richard, D. Uzio, et al., Catal. Today 289, 62 (2017).CrossRefGoogle Scholar
  10. 10.
    H. Wan and P. Chitta, J. Anal. Appl. Pyrol. 121, 369 (2016).CrossRefGoogle Scholar
  11. 11.
    V. F. Tret’yakov, R. M. Talyshinskii, A. M. Ilolov, and A. D. Budnyak, Pet. Chem. 56, 224 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. D. Budnyak
    • 1
    Email author
  • S. P. Bedenko
    • 1
  • R. M. Talyshinskii
    • 1
  • V. F. Tret’yakov
    • 1
  • A. M. Ilolov
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations