Petroleum Chemistry

, Volume 59, Issue 4, pp 405–411 | Cite as

Isoprene Formation from Isoamyl Alcohol in Microchannels of a Converter Modified with Nanoscale Catalytic Iron–Chromium-Containing Systems

  • A. S. FedotovEmail author
  • D. O. Antonov
  • V. I. Uvarov
  • M. V. Tsodikov
  • S. Paul
  • S. Heyte
  • F. Dumeignil


A two-stage process for producing isoprene from isoamyl alcohol has been developed through the successive implementation of the steps of dehydration of isoamyl alcohol and dehydrogenation of resulting isoamylenes using porous ceramic converters obtained by self-propagating high-temperature synthesis, with the converter pores bearing Fe–Cr systems synthesized by the sol–gel technique and containing subnanosized iron and chromium particles. It has been shown that the bimetallic catalytic system obtained by separate deposition of Fe and Cr has the highest activity toward the isoamylenes studied in the dehydrogenation reaction; on this catalyst system using 24-fold dilution with water and a temperature of 600°C, the isoprene yield is up to ~10%, selectivity is ~23%, and productivity is ~0.13 Lisoprene/(h gact.comp). The conversion of the isoamylene fraction is 46%.


dehydration dehydrogenation porous ceramic converter SHS synthesis fermentation products bioalcohol isoamyl alcohol isoamylenes olefins dienes hydrogen isoprene monomers 



This work was supported by the Russian Science Foundation, project no. 17-13-01270.


  1. 1.
    H.-J. Arpe and S. Hawkins, Industrial Organic Chemistry, 5th Ed. (Wiley–VCH, Weinheim, 2010). https:// Scholar
  2. 2. Scholar
  3. 3.
    I. L. Kondakov, Synthetic Rubber: Its Homologues and Analogues (Mattisen, Yur’ev, 1912) [in Russian].Google Scholar
  4. 4. Ethanol-Industry-Outlook-2016.pdf.Google Scholar
  5. 5.
    V. N. Stabnikov, Distillation and Rectification of Ethyl Alcohol, 2nd Ed. (Pishchevaya Promyshlennost’, Moscow, 1969) [in Russian].Google Scholar
  6. 6.
    A. V. Chistyakov, P. A. Zharova, M. V. Tsodikov, et al., Kinet. Catal. 57, 803 (2016).CrossRefGoogle Scholar
  7. 7.
    A. S. Fedotov, D. O. Antonov, O. V. Bukhtenko, et al., Int. J. Hydrogen Energy 42, 24131 (2017).CrossRefGoogle Scholar
  8. 8.
    J. Gose, J. Soc. Org. Synth. Chem. Jpn. 21, 508 (1963).CrossRefGoogle Scholar
  9. 9.
    H. Oda, J. Chem. Soc. Jpn. 70, 1325 (1967).Google Scholar
  10. 10.
    O. Nauch, DE Patent No. 264902 (2014).Google Scholar
  11. 11.
    B. S. Friedman, S. H. Patinkin, and W. C. Keith, US Patent No. 2 853 535 (1958).Google Scholar
  12. 12.
    S. K. Ogorodnikov and G. S. Idlis, Isoprene Production (Khimiya, Leningrad, 1973) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. S. Fedotov
    • 1
    Email author
  • D. O. Antonov
    • 1
  • V. I. Uvarov
    • 2
  • M. V. Tsodikov
    • 1
  • S. Paul
    • 3
  • S. Heyte
    • 3
  • F. Dumeignil
    • 3
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Structural Macrokinetics and Materials Science Problems, Russian Academy of SciencesChernogolovkaRussia
  3. 3.Université Lille, CNRS, Centrale Lille, ENSCL, Université Artois, UMR 8181, Unité de Catalyse et Chimie du Solide (UCCS)LilleFrance

Personalised recommendations