Advertisement

Petroleum Chemistry

, Volume 59, Issue 2, pp 167–173 | Cite as

Effect of Polymerization Conditions on Polypropylene Synthesis in Liquid Monomer

  • A. Z. BatyrshinEmail author
  • G. D. Bukatov
  • I. I. Salakhov
  • S. A. Sergeev
  • M. A. Mats’ko
  • A. A. Barabanov
  • A. G. Sakhabutdinov
Article
  • 13 Downloads

Abstract

The effect of polymerization conditions (temperature, polymerization time, monomer and hydrogen concentrations) on propylene polymerization in the liquid monomer in the presence of a TiCl4/DBP/MgCl2 + TEA/cyclohexylmethyldimethoxysilane catalyst system is studied . It is shown that the variation of the propylene polymerization conditions in the studied ranges leads to a change in the characteristics of the resulting polypropylene. The kinetic parameters of propylene polymerization in the liquid monomer for the studied catalyst system are determined. Polymerization conditions providing the formation of polypropylene with high polymer yield, isotacticity, and bulk density values are found. The process parameters that make it possible to effectively control the molecular and rheological characteristics of polypropylene are identified.

Keywords:

titanium–magnesium catalyst propylene polymerization polymerization conditions constants properties of polypropylene 

Notes

REFERENCES

  1. 1.
    C. Lee, in Proceedings of the 6th Sinopec International Conference on Catalysis Technology, Dalian, 2016. Google Scholar
  2. 2.
    J. T. M. Pater, in Proceedings of IX International Scientific-and-Practical Conference on Current State and Prospects of Innovative Development of Petroleum Chemistry, Nizhnekamsk (2016).Google Scholar
  3. 3.
    I. I. Salakhov, A. Z. Batyrshin, S. A. Sergeev, et al., Catal. Ind. 6, 198 (2014).CrossRefGoogle Scholar
  4. 4.
    I. I. Salakhov, A. Z. Batyrshin, S. A. Sergeev, et al., Catal. Ind. 8, 213 (2016).CrossRefGoogle Scholar
  5. 5.
    A. Salvatore, in Proceedings of Maack PP World Congress, September 13–15, 2004 (Zurich, 2004), Session 6/2-10, 2-26.Google Scholar
  6. 6.
    http://plastinfo.ru/information/news/13337_18.07. 2011. Accessed October 20, 2013.Google Scholar
  7. 7.
    J. T. M. Pater, G. Weickert, and W. P. M. van Swaaij, Chem. Eng. Sci. 57, 3461 (2002).CrossRefGoogle Scholar
  8. 8.
    J. T. M. Pater, G. Weickert, and W. P. M. van Swaaij, J. Appl. Polym. Sci. 87, 1421 (2003).CrossRefGoogle Scholar
  9. 9.
    S. A. Sergeev, G. D. Bukatov, and V. A. Zakharov, RU Patent No. 2191196 (2002).Google Scholar
  10. 10.
    J. J. C. Samson, P. J. Bosman, G. Weickert, and K. R. Westerterp, J. Polym. Sci., Part A: Polym. Chem. 37, 219 (1999).CrossRefGoogle Scholar
  11. 11.
    G. D. Bukatov, S. A. Sergeev, V. A. Zakharov, L. G. Echevskaya, M. A. Mats’ko, Catal. Ind. 3, 103 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • A. Z. Batyrshin
    • 1
    Email author
  • G. D. Bukatov
    • 2
  • I. I. Salakhov
    • 1
  • S. A. Sergeev
    • 2
  • M. A. Mats’ko
    • 2
  • A. A. Barabanov
    • 2
  • A. G. Sakhabutdinov
    • 1
  1. 1.PAO NizhnekamskneftekhimNizhnekamskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian Branch, Russian Academy of SciencesNovosibirskRussia

Personalised recommendations