Petroleum Chemistry

, Volume 59, Issue 1, pp 34–47 | Cite as

Application of Multidimensional Analysis Methods to Dead Oil Characterization on the Basis of Data on Thermal Field-Flow Fractionation of Native Asphaltene Nanoparticles

  • E. A. NovikovEmail author
  • Yu. A. Sergeev
  • V. V. Sanzharov
  • R. Z. SafievaEmail author
  • V. A. Vinokurov


Molecular-mass distribution curves of native nanoasphaltenes in the form of fractograms for a significant sample of crude oils have been obtained using the thermal field-flow fractionation of asphaltenes, and a multidimensional analysis of the fractionation data has been carried out in order to construct calibration models for predicting the physicochemical properties of the studied oils.


asphaltene nanoparticles temperature field dead oils multidimensional analysis 



The authors thank the Middle-Volga Research Institute of Oil Processing SV NIINP for providing oil samples and Postnova Analytics for providing the opportunity to work on the ThFFF equipment.


  1. 1.
    V. F. Kam’yanov and G. F. Bol’shakov, Neftekhimiya 24, 450 (1994).Google Scholar
  2. 2.
    M. A. Kopytov and A. K. Golovko, Pet. Chem. 57, 39 (2017).CrossRefGoogle Scholar
  3. 3.
    A. Hammami and J. Ratulowski, Asphaltenes, Heavy Oils, and Petroleomics, Ed. by O. C. Mullins., E. Y. Sheu, A. Hammami, A. G. Marshall (Springer, New York, 2007), p. 617.Google Scholar
  4. 4.
    J. Gross and G. Sadowski, Ind. Eng. Chem. Res. 40, 1244 (2001).CrossRefGoogle Scholar
  5. 5.
    F. M. Vargas, D. L. Gonzalez, G. J. Hirasaki, and W. G. Chapman, Energy Fuels 23, 1140 (2009).CrossRefGoogle Scholar
  6. 6.
    Z. I. Syunyaev, R. Z. Safieva, and R. Z. Syunyaev, Petroleum Dispersed Systems (Khimiya, Moscow, 1980) [in Russian].Google Scholar
  7. 7.
    R. Z. Safieva, Physical Chemistry of Petroleum: Physicochemical Principles of Petroleum Refining (Khimiya, Moscow, 1998) [in Russian].Google Scholar
  8. 8.
    O. V. Zaytseva, E. E. Magomadov, Kh. M. Kadiev, et al., Pet. Chem. 53, C309 (2013).CrossRefGoogle Scholar
  9. 9.
    Yu. M. Ganeeva, T. N. Yusupova, and G. V. Romanov, Usp. Khim. 80, 1034 (2011).CrossRefGoogle Scholar
  10. 10.
    N. Aske, H. Kallevik, E. Johnsen, and J. Sjoblom, Energy Fuels 16, 12287 (2002).CrossRefGoogle Scholar
  11. 11.
    Asphaltene 2017, in PetroPhase 2017: The 18 th International Conference on Petroleum Phase Behavior and Fouling, Le Havre, France, June 11–15, Book of Abstracts, p. 285.Google Scholar
  12. 12.
    V. N. Kur’yakov, Candidate’s Dissertation and Physics and Mathematics (Moscow, 2016) [in Russian].Google Scholar
  13. 13.
    O. C. Mullins, B. Martinez-Haya, and A. G. Marshall, Energy Fuels 22, 1765 (2008).CrossRefGoogle Scholar
  14. 14.
    K. Akbarzadeh, A. Hammami, A. Kharrat, et al., Oilfield Rev. 19 (2), 22 (2007).Google Scholar
  15. 15.
    O. P. Strausz, I. Safarik, E. M. Lown, and A. Morales-Izquierdo, Energy Fuels 22, 1156 (2008).CrossRefGoogle Scholar
  16. 16.
    I. N. Evdokimov, A. A. Fesan, and A. P. Losev, Energy Fuels 30, 8226 (2016).CrossRefGoogle Scholar
  17. 17.
    L. C. Krajewski, R. P. Rodgers, and A. G. Marshall, Anal. Chem. 89, 11318 (2017).CrossRefGoogle Scholar
  18. 18.
    J. G. Speight, Handbook of Petroleum Product Analysis (Wiley, Hoboken, NJ, 2015), 2nd Ed.Google Scholar
  19. 19.
    Field Flow Fractionation Handbook, Ed. by M. E. Schimpf, K. Caldwell, and J. C. Giddings, (Wiley–Interscience, New York, 2000).Google Scholar
  20. 20.
    M. Martin, I. Ignatiadis, and R. Reynaud, Fuel 66, 1436 (1987).CrossRefGoogle Scholar
  21. 21.
    C. D. Ceballo, R. Martinez, and A. Escalona, Pet. Sci. Technol. 17, 783 (1999).CrossRefGoogle Scholar
  22. 22.
    S. Satya, R. M. Roehner, D. D. Milind, and F. V. Hanson, Energy Fuels 21, 998 (2007).CrossRefGoogle Scholar
  23. 23.
    O. Abbas, C. Rebufa, N. Dupuy, et al., Fuel 98, 5 (2012).CrossRefGoogle Scholar
  24. 24.
    J. Laxalde, C. Ruckebusch, O. Devos, et al., Anal. Chim. Acta, 705, 227 (2011).CrossRefGoogle Scholar
  25. 25.
    I. G. Yashchenko and Yu. M. Polishchuk, Izv. Tomsk. Politekh. Univ. 326 (4), 56 (2015).Google Scholar
  26. 26.
    P. J. Rousseeuw, J. Comput. Appl. Math. 20, 53 (1987).CrossRefGoogle Scholar
  27. 27.
    H. Drucker, C. J. C. Burges, L. Kaufman, et al., Support vector regression machines, in Advances in Neural Information Processing Systems, 9 (MIT Press, Cambridge, 1996), p. 155.Google Scholar
  28. 28.
    E. Roger, C. Ovales, and M. E. Moir, Analytical Methods in Petroleum Upstream Applications, Ed. by C. Ovalles and C. E. Rechsteiner, Jr. (CRC, Boca Raton, 2015), p. 337.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia

Personalised recommendations