Petroleum Chemistry

, Volume 59, Issue 1, pp 71–77 | Cite as

Propane Conversion in the Presence of Alumina-Based Aerogel

  • E. B. MarkovaEmail author
  • A. G. Cherednichenko
  • V. N. Simonov
  • Yu. M. Serov
  • M. V. Odintsova
  • A. S. Lyadov


Features of propane conversion for selective olefin production in the presence of nanofibrous aerogel materials have been studied. The effect of modification of aerogel alumina with titania and silica on the catalytic activity and the olefin selectivity in propane conversion at atmospheric pressure has been shown. Low-temperature nitrogen adsorption has revealed that these catalysts have a developed specific surface area of about 300 m2/g; water vapor adsorption at 293 K has shown that materials of this type contain 0.2–0.6 mmol/g of acid sites. X-ray diffraction analysis and transmission electron microscopy have revealed that the synthesized materials are an amorphous aerogel with tangled fibers with a thickness of ~6 nm.


propane conversion ethylene propylene alumina titania silica 



This work was supported by the Ministry of Education and Science of the Russian Federation under the Program for enhancement of the competitiveness of the Peoples’ Friendship University of Russia among the leading research and educational centers of the world in 2016–2020.


  1. 1.
    Market Study: Propylene (UC-1705) (Ceresana, Constance, 2011).Google Scholar
  2. 2.
    S. V. Adel’son, T. P. Vishnyakova, and Ya. M. Paushkin, A Textbook of Petrochemical Synthesis Technology (Khimiya, Moscow, 1985), 2nd Ed. [in Russian].Google Scholar
  3. 3.
    A. V. Obysov, A. V. Dul’nev, S. M. Sokolov, et al., RU Patent No. 2446879 (2010). Scholar
  4. 4.
    A. V. Glazov, O. I. Dmitrichenko, N. V. Korotkova, et al., RU Patent No. 2127632 (1999). http://www. Scholar
  5. 5.
    N. Rahimi, D. Moradi, M. Sheibak, et al., Microporous Mesoporous Mater. 234, 215 (2016).CrossRefGoogle Scholar
  6. 6.
    J. Lva, Z. Huaa, T. Gea, et al., Micropor Mesopor Mat 247, 31 (2017).CrossRefGoogle Scholar
  7. 7.
    S. Asadi, L. Vafi, and R. Karimzadeh, Microporous Mesoporous Mater. 255, 253 (2018).CrossRefGoogle Scholar
  8. 8.
    E. B. Markova, A. S. Lyadov, and V. V. Kurilkin, Russ. J. Phys. Chem. A 90, 1754 (2016).CrossRefGoogle Scholar
  9. 9.
    N. A. Pakhomov and R. A. Buyanov, Kinet. Catal. 46, 669 (2005).CrossRefGoogle Scholar
  10. 10.
    A. F. Bedilo, E. V. Il’ina, I. V. Mishakov, and A. A. Vedyagin, Khim. Interesah Ustoich. Razvit. 19, 31 (2011).Google Scholar
  11. 11.
    O. K. Krasil’nikova, A. S. Pogosyan, N. V. Serebryakova, et al., Prot. Met. Phys. Chem. Surf. 44, 362 (2008).Google Scholar
  12. 12.
    J. Aarik, A. Aidla, V. Sammelselg, et al., Thin Solid Films 370, 163 (2000).CrossRefGoogle Scholar
  13. 13.
    R. Sh. Vartapetyan, A. M. Voloshchuk, M. M. Dubinin, et al., Russ. Chem. Bull. 31, 1078 (1982).CrossRefGoogle Scholar
  14. 14.
    E. B. Markova, O. K. Krasil’nikova, and Yu. M. Serov, Neftepererab. Neftekhim., No. 3, 8 (2013).Google Scholar
  15. 15.
    E. B. Markova, Extended Abstract of Candidate’s Dissertation in Chemistry (Moscow, 2015).Google Scholar
  16. 16.
    K. G. Boreskov, Theoretical Aspects of Catalysis (Nauka, Moscow, 1975) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  • E. B. Markova
    • 1
    • 2
    • 3
    Email author
  • A. G. Cherednichenko
    • 1
  • V. N. Simonov
    • 3
    • 4
  • Yu. M. Serov
    • 1
  • M. V. Odintsova
    • 1
  • A. S. Lyadov
    • 2
  1. 1.Peoples’ Friendship University of RussiaMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  3. 3.Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of SciencesMoscowRussia
  4. 4.National Research Nuclear University Moscow Engineering Physics InstituteMoscowRussia

Personalised recommendations