Advertisement

Petroleum Chemistry

, Volume 59, Issue 1, pp 48–56 | Cite as

Composition of Hydrothermal–Catalytic Conversion Products of Asphaltite from the Spiridonovskoe Oilfield

  • V. R. AntipenkoEmail author
  • G. P. KayukovaEmail author
  • I. M. Abdrafikova
Article
  • 11 Downloads

Abstract

It has been shown that the hydrothermal–catalytic conversion of solid natural asphaltite of the Spiridonovskoe oilfield (Republic of Tatarstan) at 250°C in the presence of hematite yields liquid products with a reduced amount of resins and asphaltenes. At the same time, a dispersed phase of insoluble carburized substances of the carbene and carboid types appears in the conversion products. The structural-group and molecular compositions of oils in the liquid products of conversion, which are enriched in aromatic, polycycloaromatic, and carbonyl-containing structural units and sulfoxides according to 1H NMR and IR data, have been determined. It has been established that the molecular composition of oils from the initial asphaltite and its conversion products is almost the same, but there are changes in the relative amount of various types of compounds. A low concentration of alkanes and an increased concentration of triterpanes characterize the initial Spiridonovskoe asphaltite as a biodegraded object. In the conversion products, the relative amount of alkanes has sharply increased and the concentrations of tri- and tetracyclic aromatic hydrocarbons (HC) and dibenzothiophenes have become greater. The proportion of phenanthrenes and tetracyclic aromatic hydrocarbons has increased by factors of 9.3 and 2.6, respectively, and alkylcyclohexanes have been identified, which are absent in the original asphaltite. But the relative amount of polycyclic naphthenes (pregnanes, steranes, cheilanthanes, and hopanes) significantly decreased. The revealed differences are apparently determined by the scale of generation of these compounds by the degradation of resins and asphaltenes, in which the compounds occur as structural units of molecules or in an adsorbed and/or occluded form.

Keywords:

natural asphaltite hydrothermal–catalytic conversion liquid conversion products composition properties 

Notes

ACKNOWLEDGMENTS

The authors thank the Tomsk Regional Center for Collective Use at the Tomsk Scientific Center (Siberian Branch, Russian Academy of Sciences) for kindly providing access to the instruments Nicolet 5700FTIR spectrometer with a TermoElectron Raman module and Termo Scientific DFS high resolution mass spectrometer.

REFERENCES

  1. 1.
    N. V. Bakhtizina, Nauchno-Tekh. Vestn. OAO NK Rosneft’, No. 24, 30 (2011).Google Scholar
  2. 2.
    Russian Crude Oil: Problems and Prospects (Moscow Carnegie Center, Moscow, 2013). http://carnegie.ru/2013/05/28/.Google Scholar
  3. 3.
    Mineral and Raw Material Resources (Administration of the Republic of Tatarstan, 2013). http://tfi.tatarstan. ru/rus/mineral.htm.Google Scholar
  4. 4.
    N. Maganov, N. Ibragimov, R. Khisamov, et al., Oil Gas J. Russ., No. 7, 60 (2015).Google Scholar
  5. 5.
    V. I. Sharypov, N. G. Beregovtsova, S. V. Baryshnikov, and B. N. Kuznetsov, Khim. Interesah Ustoich. Razvit. 5, 287 (1997).Google Scholar
  6. 6.
    I. M. Abdrafikova, G. P. Kayukova, S. M. Petrov, et al., in Proceedings of International Scientific–Practical Conference “Problems of Increasing the Efficiency of Oilfield Development at a Late Stage”, September 4–6, 2013 (FEN, Kazan), p. 161 [in Russian].Google Scholar
  7. 7.
    I. M. Abdrafikova, G. P. Kayukova, S. M. Petrov, et al., Pet. Chem. 55, 104 (2015).CrossRefGoogle Scholar
  8. 8.
    G. P. Kayukova, A. T. Gubaidullin, S. M. Petrov, et al., Energy Fuels 30, 773 (2016).CrossRefGoogle Scholar
  9. 9.
    Syringe Pump Application Note AN12: In-situ techniques for recovery of oil sands using Teledyne Isco syringe pumps (Teledyne Isco, Lincoln, 2012).Google Scholar
  10. 10.
    G. P. Kayukova, S. M. Petrov, and B. V. Uspenskii, Properties of Heavy Oils and Bitumens from Tatarstan Permian Deposits in Natural and Anthropogenic Processes (GEOS, Moscow, 2015) [in Russian].Google Scholar
  11. 11.
    G. P. Kayukova, G. V. Romanov, R. Kh. Muslimov, et al., Chemistry and Geochemistry of Permian Bitumens of Tatarstan (Nauka, Moscow, 1999) [in Russian].Google Scholar
  12. 12.
    G. P. Kayukova, G. V. Romanov, R. G. Luk’yanova, and N. S. Sharipova, Organic Geochemistry of Sedimentary Strata and Basement in Tatarstan Territory (GEOS, Moscow, 2009) [in Russian].Google Scholar
  13. 13.
    V. R. Antipenko, O. A. Golubina, I. V. Goncharov, et al., Izv. Tomsk. Politekh.Univ. 308 (6), 122 (2005).Google Scholar
  14. 14.
    V. R. Antipenko, I. V. Goncharov, Yu. V. Rokosov, and L. S. Borisova, Russ. J. Phys. Chem. B 5, 1195 (2011).CrossRefGoogle Scholar
  15. 15.
    V. R. Antipenko, Thermal Transformations of Natural High-Sulfur Asphaltite: Geochemical and Engineering Aspects (Nauka, Novosibirsk, 2013) [in Russian].Google Scholar
  16. 16.
    O. N. Fedyaeva, V. R. Antipenko, and A. A. Vostrikov, J. Supercrit. Fluids 88, 105 (2014).CrossRefGoogle Scholar
  17. 17.
    A. A. Vostrikov, V. R. Antipenko, A. V. Shishkin, and O. N. Fedyaeva, Russ. J. Phys. Chem. B 8, 1069 (2014).CrossRefGoogle Scholar
  18. 18.
    G. P. Kayukova, A. M. Kiyamova, and G. V. Romanov, Pet. Chem. 52, 5 (2012).CrossRefGoogle Scholar
  19. 19.
    G. P. Kayukova, B. V. Uspenskii, I. M. Abdrafikova, and R. Z. Musin, Pet. Chem. 56, 572 (2016).CrossRefGoogle Scholar
  20. 20.
    Modern Oil Investigation Techniques: A Tutorial, Ed. by A. I. Bogomolov, M. B. Temyanko, and L. I. Khotyntseva (Nedra, Leningrad, 1984), p. 431 [in Russian].Google Scholar
  21. 21.
    G. F. Bol’shakov, Infrared Spectra of Arenes (Nauka, Novosibirsk, 1989) [in Russian].Google Scholar
  22. 22.
    J. G. Speight, Handbook of Petroleum Analysis (Willey–Interscience, New York, 2001).Google Scholar
  23. 23.
    D. J. Cookson and B. E. Smith, Fuel 68, 776 (1989).CrossRefGoogle Scholar
  24. 24.
    O. N. Fedyaeva, V. R. Antipenko, and A. A. Vostrikov, Russ. J. Phys. Chem. B 11, 1246 (2017).CrossRefGoogle Scholar
  25. 25.
    B. P. Tumanyan, Academic and Applied Aspects of the Theory of Petroleum Dispersed Systems (Tekhnika, Moscow, 2000) [in Russian].Google Scholar
  26. 26.
    A. A. Petrov, Petroleum Hydrocarbons (Springer, Berlin, 1987).CrossRefGoogle Scholar
  27. 27.
    K. E. Peters and J. M. Moldowan, The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments (Prentice Hall, Englewood Cliffs, NJ, 1993).Google Scholar
  28. 28.
    K. E. Peters, C. C. Walters, and J. M. Moldovan, The Biomarker Guide: Biomarkers and Isotopes in Petroleum Systems and Earth History, in two volumes (Cambridge Univ. Press, Cambridge, 2005).Google Scholar
  29. 29.
    I. Rubinstein, C. Spyckerelle, and O. P. Strausz, Geochim. Cosmochim. Acta 43, 1 (1979).CrossRefGoogle Scholar
  30. 30.
    O. A. Aref’ev, V. M. Makushina, and Al. A. Petrov, Izv. Akad. Nauk SSSR, Ser. Geol., No. 4, 124 (1980).Google Scholar
  31. 31.
    G. N. Gordadze and Al. A. Petrov, Geol. Nefti Gaza, No. 3, 31 (1986).Google Scholar
  32. 32.
    D. M. Jones, A. G. Douglas, and J. Connan, Org. Geochem. 13, 981 (1988).CrossRefGoogle Scholar
  33. 33.
    Z. Sofer, Org. Geochem. 13, 939 (1988).CrossRefGoogle Scholar
  34. 34.
    G. N. Gordadze, Thermolysis of Organic Matter in Oil and Gas Exploration Geochemistry (IGiRGI, Moscow, 2002) [in Russian].Google Scholar
  35. 35.
    G. N. Gordadze and G. V. Rusinova, Pet. Chem. 43, 306 (2003).Google Scholar
  36. 36.
    G. N. Gordadze, M. V. Giruts, V. N. Koshelev, and T. N. Yusupova, Pet. Chem. 55, 32 (2015).CrossRefGoogle Scholar
  37. 37.
    V. R. Antipenko and V. N. Melenevskii, Pet. Chem. 52, 373 (2012).CrossRefGoogle Scholar
  38. 38.
    A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Pet. Chem. 52, 221 (2012).CrossRefGoogle Scholar
  39. 39.
    A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Neftepererab. Neftekhim., No. 4, 24 (2012).Google Scholar
  40. 40.
    A. A. Grin’ko, R. S. Min, T. A. Sagachenko, and A. K. Golovko, Khim. Interesah Ustoich. Razvit. 20, 205 (2012).Google Scholar
  41. 41.
    Z. G. Agafonova, Geol. Nefti Gaza, No. 5, 37 (2003).Google Scholar
  42. 42.
    B. P. Tissot and D. H. Welte, Petroleum Formation and Occurrence (Springer, Berlin, 1978).CrossRefGoogle Scholar
  43. 43.
    C. Yang, Z. Liao, L. Zhang, and P. Creux, Energy Fuels 23, 820 (2009).CrossRefGoogle Scholar
  44. 44.
    V. P. Sergun, T. V. Cheshkova, T. A. Sagachenko, and R. S. Min, Izv. Tomsk. Politekh. Univ.: Inzh. Georesurs. 328 (7), 228 (2017).Google Scholar
  45. 45.
    O. A. Aref’ev, M. N. Zabrodina, G. V. Rusinova, and Al. A. Petrov, Neftekhimiya 34, 483 (1994).Google Scholar
  46. 46.
    V. R. Antipenko, Izv. Tomsk. Politekh. Univ. 319 (3), 125 (2011).Google Scholar
  47. 47.
    V. R. Antipenko, Pet. Chem. 52, 171 (2012).CrossRefGoogle Scholar
  48. 48.
    S. B. Ostroukhov, O. A. Aref’ev, V. M. Makushina, et al., Neftekhimiya 22, 723 (1982).Google Scholar
  49. 49.
    R. E. Summons and T. G. Powell, Nature 319, 763 (1986).CrossRefGoogle Scholar
  50. 50.
    R. E. Summons and T. G. Powell, Geochim. Cosmochim. Acta 51, 557 (1987).CrossRefGoogle Scholar
  51. 51.
    M. P. Koopmans, J. Koster, H. M. E. Schouten, et al., Geochim. Cosmochim. Acta 60, 4467 (1996).CrossRefGoogle Scholar
  52. 52.
    Bergey’s Manual of Determinative Bacteriology, Ed. by J. G. Holt, N. R. Krieg, P. H. A. Sneath, (Lippincott Williams & Wilkins, Philadelphia, 1994), 9th Ed.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Institute of Petroleum Chemistry, Siberian Branch, Russian Academy of SciencesTomskRussia
  2. 2.Arbuzov Institute of Organic and Physical Chemistry, Federal Research Center, Russian Academy of SciencesKazanRussia
  3. 3.Kazan (Volga Region) Federal UniversityKazanRussia

Personalised recommendations