Petroleum Chemistry

, Volume 59, Issue 1, pp 57–65 | Cite as

Effect of Brine on Asphaltene Precipitation at High Pressures in Oil Reservoirs

  • Abolhasan AmeriEmail author
  • Feridun EsmaeilzadehEmail author
  • Dariush MowlaEmail author


In this study, the effect of NaCl, KCl, CaCl2, MgCl2, MgSO4, and CaCl2 salts in brine in the range of low (1000−5000 ppm) and intermediate (5000−40 000 ppm) salinity water on the amount and offset pressure of asphaltene precipitation was investigated. The measurements were performed at reservoir temperature (350.15 K) and high pressures (0−100 bar). The IFT (Interfacial Tension) values increased with pressure and a sudden increase was observed at a specific pressure namely, an offset pressure of asphaltene precipitation in APE (Asphaltene Precipitation Envelope). For all brines, the amount of IFT with increasing concentration was in descending order and after a minimum value it changed to uptrend. Likewise, similar results were obtained for the precipitated asphaltene amount. All the brines intensified the asphaltene precipitation. Monovalent cations like Na+ and K+ showed higher values of IFT and hence more asphaltene precipitation, however, MgCl2 showed the least IFT, offset pressure and the amount of asphaltene precipitation.


asphaltene brine precipitation interfacial tension high pressure 



The authors are grateful to the Shiraz University and Enhanced Gas Condensate Recovery Research Group for supporting this research.


  1. 1.
    J. G. Speight, Handbook of Petroleum Product Analysis (Wiley, New York, 2015), 2nd Ed.Google Scholar
  2. 2.
    B. Mahmoudi and M. R. Zare-Reisabadi, Pet. Coal 57, 346 (2015),Google Scholar
  3. 3.
    S. F. Austad, S. Shariatpanahi, and C. J. J. Strand, Black, and K. J. Webb, Energy Fuels 26, 569 (2011).CrossRefGoogle Scholar
  4. 4.
    S. I. Andersen and J. G. Speight, Pet. Sci. Technol. 19, 1 (2001).CrossRefGoogle Scholar
  5. 5.
    J. Murgich, D. Merino-Garcia, S. I. Andersen, J. M. Río, and C. L. Galeana, Langmuir 18, 9080 (2002).CrossRefGoogle Scholar
  6. 6.
    D. S. Khvostichenko, S. I. Andersen, and A. I. Viktorov, Russ. J. Appl. Chem. 77, 1013 (2004).CrossRefGoogle Scholar
  7. 7.
    D. S. Khvostichenko and S. I. Andersen, Energy Fuels. 22, 3096 (2008).CrossRefGoogle Scholar
  8. 8.
    A. K. Tharanivasan, H. W. Yarranton, and S. D. Taylor, Energy Fuels. 26, 6869 (2012).CrossRefGoogle Scholar
  9. 9.
    D. Subramanian and A. Firoozabadi, in Proceedings of Abu Dhabi Intretnational Petroleum Exhibition and Conference, Abu Dhabi, UAE 9–12 November (2015).Google Scholar
  10. 10.
    C. S. Vijapurapu and D. N. Rao, Colloids Surf. A. 241, 335 (2004).CrossRefGoogle Scholar
  11. 11.
    F. Moeini, A. Hemmati-Sarapardeh, M.-H. Ghazanfari, M. Masihi, and S. Ayatollahi, Fluid Phase Equilib. 375, 191 (2014).CrossRefGoogle Scholar
  12. 12.
    A. P. Gast and A. W. Adamson, Physical Chemistry of Surfaces (Wiley, New York, 1997).Google Scholar
  13. 13.
    J. D. Payzant, E. M. Lown, and O. P. Strausz, Energy Fuels. 5, 445 (1991).CrossRefGoogle Scholar
  14. 14.
    H. W. Yarranton, H. Alboudwarej, and R. Jakher, Ind. Eng. Chem. Res. 39, 2916 (2000).CrossRefGoogle Scholar
  15. 15.
    D. L. Katz and K. E. Beu, Ind. Eng. Chem. Res. 37, 195 (1945).CrossRefGoogle Scholar
  16. 16.
    L. C. Price, AAPG Bull. 60, 213 (1976).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2019

Authors and Affiliations

  1. 1.Department of Chemical and Petroleum Engineering, School of Chemical and Petroleum Engineering, Enhanced Oil and Gas Recovery Institute, Enhanced Gas Condensate Recovery Research Group, Shiraz UniversityShirazFarsIran

Personalised recommendations