Advertisement

Petroleum Chemistry

, Volume 58, Issue 14, pp 1227–1232 | Cite as

Hydroconversion of Thiophene Derivatives over Dispersed Ni–Mo Sulfide Catalysts

  • A. V. VutolkinaEmail author
  • D. F. Makhmutov
  • A. V. Zanina
  • A. L. Maximov
  • D. S. Kopitsin
  • A. P. Glotov
  • S. V. Egazar’yants
  • E. A. Karakhanov
Article
  • 2 Downloads

Abstract

The activity of unsupported Ni–Mo sulfide catalysts is studied in the hydroconversion of benzothiophene and dibenzothiophenes in the temperature range of 340–380°С and at an increased H2 pressure and in the СО/H2О system. The structure of dispersed catalysts formed by the in situ high-temperature decomposition of oil-soluble precursors (molybdenum hexacarbonyl, nickel naphthenate) is investigated by TEM. Effects of СО/H2О molar ratio, water mass content in the system, and CO pressure on the activity of the catalysts and yields of the products are explored. It is shown that, in the СО/H2О system, the highest conversion of benzothiophene and dibenzothiophene is attained at a temperature of 380°С, a СО pressure of 5 MPa, and a СО/H2О molar ratio of 2. The introduction of alkyl substituents into a dibenzothiophene molecule causes a reduction in the rate of reaction that predominantly occurs via the hydrogenation of aromatic rings. The catalyst activities in hydrogenation under H2 pressure and in the СО/H2О system are comparable.

Keywords:

hydrodesulfurization nickel–molybdenum sulfide catalysts dispersed catalysts water-gas shift reaction 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research, project no. 18-38-00593.

REFERENCES

  1. 1.
    R. N. Hashemi, N. N. Nassar, and P. P. Almao, Appl. Energy 133, 374 (2014).CrossRefGoogle Scholar
  2. 2.
    S. Eijsbouts, S. W. Mayo, and K. Fujita, Appl. Catal., A 322, 58 (2007).Google Scholar
  3. 3.
    A. Olivas, T. A. Zepeda, I. Villalpando, and S. Fuentes, Catal. Commun. 9, 1317 (2008).CrossRefGoogle Scholar
  4. 4.
    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54 (5), 323 (2014).CrossRefGoogle Scholar
  5. 5.
    I. A. Sizova and A. L. Maksimov, Pet. Chem. 57 (7), 595 (2017).CrossRefGoogle Scholar
  6. 6.
    I. A. Sizova, A. B. Kulikov, A. V. Zolotukhina, S. I. Serdyukov, A. L. Maksimov, and E. A. Karakhanov, Pet. Chem. 56 (12), 1107 (2016).CrossRefGoogle Scholar
  7. 7.
    A. V. Vutolkina, D. F. Makhmutov, A. V. Zanina, A. L. Maksimov, A. P. Glotov, N. A. Sinikova, and E. A. Karakhanov, Pet. Chem. 58 (7), 528 (2018).CrossRefGoogle Scholar
  8. 8.
    K. Marchand, C. Legens, D. Guillaume, and P. A. Raybaud, Oil Gas Sci. Technol. - Rev. IFP 64 (6), 719 (2009).Google Scholar
  9. 9.
    A. Stanislaus and B. H. Cooper, Catal. Rev.: Sci. Eng. 36 (1), 75 (1994).CrossRefGoogle Scholar
  10. 10.
    S. A. Ali, Pet. Sci. Technol. 25, 1293 (2007).CrossRefGoogle Scholar
  11. 11.
    D. Ishutenko, P. Minaev, Y. Anashkin, M. Nikulshina, A. Mozhaev, K. Maslakov, and P. Nikulshin, Appl. Catal., B 203, 237 (2017).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Vutolkina
    • 1
    Email author
  • D. F. Makhmutov
    • 1
  • A. V. Zanina
    • 1
  • A. L. Maximov
    • 1
    • 2
  • D. S. Kopitsin
    • 3
  • A. P. Glotov
    • 1
    • 3
  • S. V. Egazar’yants
    • 1
  • E. A. Karakhanov
    • 1
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  3. 3.Gubkin Russian State University of Oil and Gas (National Research University)MoscowRussia

Personalised recommendations