Advertisement

Petroleum Chemistry

, Volume 58, Issue 14, pp 1173–1180 | Cite as

Formation of Hydrocarbon Nanoscale Microemulsions Containing Group VI Metals and Catalytic Cracking of Final Systems

  • T. A. PalankoevEmail author
  • K. I. Dement’ev
  • S. N. Khadzhiev
Article
  • 2 Downloads

Abstract

Regularities of the catalytic cracking of petroleum fractions in the presence of metal sulfides formed in situ from microemulsion of the “oil fraction–aqueous solution of transition metal salt” type are studied. The conditions of formation of microemulsions containing particles of the dispersed phase with a size less than 140 nm are found. The main features of thermolysis of these systems are ascertained, and the phase composition of the resulting materials is identified. The intensification of catalytic cracking by molybdenum and tungsten sulfides at expense of internal hydrogen resources is studied. This effect makes itself evident as an increase in the feedstock conversion by 6.0–7.6%; the yield of gas and the gasoline fraction increases by 2.1–2.5 and 5.6–6.1%, respectively.

Keywords:

molybdenum sulfide tungsten sulfide catalytic cracking zeolite-containing catalysts microemulsions 

Notes

ACKNOWLEDGMENTS

The production of microemulsions and investigation of their properties were partially supported by the Foundation for Assistance of Small Innovative Enterprises in Science and Technology within the framework of the UMNIK program, theme “Development of Production Method of Zeolite Catalysts Possessing a Hydrogenating Function,” contract no. 8805GU/2015 (2015). The performance of catalytic experiments was supported by the Federal Agency of Scientific Organizations of Russia within the scope of the State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    BP Global. Statistical Review of World Energy. http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html. Cited February 15, 2018.Google Scholar
  2. 2.
    G. Vorbec, W. J. J. Welters, L. J. M. Ven, H. W. Zandbergen, J. W. Haan, V. H. J. Beer, and R. A. Santen, Stud. Surf. Sci. Catal. 84, 1617 (1994).CrossRefGoogle Scholar
  3. 3.
    R. Cid, J. Neira, J. Godoy, J. M. Palacios, S. Mendioroz, and A. L. Agudo, J. Catal. 141, 206 (1993).CrossRefGoogle Scholar
  4. 4.
    S. Zeng, J. Blanchard, M. Breysse, Y. Shi, X. Su, H. Nie, and D. Li, Appl. Catal., A 294, 59 (2005).Google Scholar
  5. 5.
    S. Zeng, J. Blanchard, M. Breysse, Y. Shi, X. Su, H. Nie, and D. Li, Appl. Catal., A 298, 88 (2006).Google Scholar
  6. 6.
    R. Huirache-Acuna, T. A. Zepeda, E. M. Rivera-Munoz, R. Nava, C. V. Loricera, and B. Pawelec, Fuel 149, 149 (2015).CrossRefGoogle Scholar
  7. 7.
    L. Hao, G. Xiong, L. Liu, H. Long, F. Jin, and X. Wang, Chin. J. Catal 37, 412 (2016).CrossRefGoogle Scholar
  8. 8.
    D. Qi, A. Duan, Z. Zhao, H. Wu, H. Fan, H. Fang, J. Li, G. Jiang, J. Liu, Y. Wei, and X. Zhang, J. Porous Mater. 22, 127 (2015).CrossRefGoogle Scholar
  9. 9.
    P. W. Bont, M. J. Vissenberg, V. H. J. Beer, J. A. R. Veen, R. A. Santen, and A. M. Kraan, Appl. Catal., A 202, 99 (2000).Google Scholar
  10. 10.
    L. A. Zekel’, N. V. Krasnobaeva, Kh. M. Kadiev, S. N. Khadzhiev, and M. Ya. Shpirt, Solid Fuel Chem. 44, 387 (2010).CrossRefGoogle Scholar
  11. 11.
    I. M. Gerzeliev, K. I. Dement’ev, and S. N. Khadzhiev, Pet. Chem. 55, 481 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • T. A. Palankoev
    • 1
    Email author
  • K. I. Dement’ev
    • 1
  • S. N. Khadzhiev
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations