Advertisement

Petroleum Chemistry

, Volume 58, Issue 14, pp 1245–1254 | Cite as

Effect of Synthesis Temperature Formation of the Structure and Properties of Silicoaluminophosphate with the AEI Structure

  • E. E. KnyazevaEmail author
  • V. I. Kasnerik
  • S. V. Konnov
  • A. O. Ivanov
  • I. V. Dobryakova
  • I. I. Ivanova
Article
  • 5 Downloads

Abstract

Changes in the phase, morphological, and textural properties of silicoaluminophosphates with the AEI structure during crystallization at 150, 170, and 190°С are studied. Using a combination of physicochemical methods, evolution of the solid phase extracted at different steps of synthesis is shown. It is established that at 150°С the microporous phase containing silicon in tetrahedral positions of the framework appears already at the initial stages of crystallization and further nanostructuring of the solid phase is associated with the incorporation of silicon via the SM3 mechanism. At 170°С, crystallization proceeds through formation of the aluminophosphate and aluminosilicate mixed mesoporous composite. The transformation of mixed composite into the microporous crystalline material is accompanied by the incorporation of [SiO4] isolated tetrahedra into the forming crystalline framework according to the SM2 mechanism; this provides a strong acidity of the material. The intermediate mesoporous semiproduct extracted at the initial stages of synthesis at 190°С is a mixture of disordered aluminophosphate and coarse mesoporous agglomerates; their transformation into silicoaluminophosphate with the AEI structure occurs only upon silica transfer to the liquid phase, and the incorporation of silicon into the AEI crystalline framework proceeds via the SM3 mechanism with the subsequent formation of silicon islands.

Keywords:

silicoaluminophosphates with the AEI structure nanostructuring crystallization temperature intermediate products morphology porous structure silicon incorporation 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation (grant no. 14-23-00094) and within the scope of State Task for the Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences.

REFERENCES

  1. 1.
    D. M. Marcus, W. Song, L. L. Ng, and J. F. Haw, Langmuir 18, 8386 (2002).CrossRefGoogle Scholar
  2. 2.
    J. Chen, P. A. Wright, J. M. Thomas, S. Natarajan, L. Marchese, S. M. Bradley, G. Sankar, and R. A. Catlow, J. Phys. Chem. 98, 10 216 (1994).CrossRefGoogle Scholar
  3. 3.
    E. E. Knyazeva, S. V. Konnov, O.V. Shutkina, I. V. Dobryakova, O. A. Ponomareva, and I. I. Ivanova, Pet. Chem. 54 (4), 288 (2014).CrossRefGoogle Scholar
  4. 4.
    V. I. Kasnerik, S. V. Konnov, I. V. Dobryakova, A. O. Ivanov, E. E. Knyazeva, and I. I. Ivanova, Pet. Chem. 56 (3) 217 (2016).CrossRefGoogle Scholar
  5. 5.
    R. Szostak, Molecular Sieves. Principles of Synthesis and Identification (Van Nostrand Reinhold, New York, 1989).Google Scholar
  6. 6.
    H. He and J. Klinowski, J. Phys. Chem. 97, 10 385 (1993).CrossRefGoogle Scholar
  7. 7.
    W. Mozgawa, M. Krol, and K. Barczyk, CHEMIK 65, 671 (2011).Google Scholar
  8. 8.
    D. Zhou, J. Xu, J. Yu, L. Chen, F. Deng, and R. Xu, J. Phys. Chem. B 110, 2131 (2006).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. E. Knyazeva
    • 1
    • 2
    Email author
  • V. I. Kasnerik
    • 1
  • S. V. Konnov
    • 2
  • A. O. Ivanov
    • 2
  • I. V. Dobryakova
    • 1
  • I. I. Ivanova
    • 1
    • 2
  1. 1.Faculty of Chemistry, Moscow State UniversityMoscowRussia
  2. 2.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations