Advertisement

Petroleum Chemistry

, Volume 58, Issue 13, pp 1129–1132 | Cite as

Ion Transport in Hybrid Membranes Based on Perfluorosulfonic Polymers

  • A. K. OsipovEmail author
  • I. A. Prikhno
  • A. B. Yaroslavtsev
Article
  • 6 Downloads

Abstract

A comparative study of the transport characteristics of Nafion and Aquivion perfluorinated membranes and hybrid membranes on their basis has been carried out. It has been shown that the modification of membranes of both types with acid salts of heteropoly acids and silica significantly increases their proton conductivity. In the case of high humidity, the best conductivity is achieved when they are doped with salts of heteropoly acids. The highest improvement in the membrane conductivity is achieved at low humidity for membranes doped with SiO2; in this case, the conductivity is increased by almost an order of magnitude.

Keywords:

perfluorinated membranes hybrid membranes salts of heteropoly acids Nafion Aquivion proton conductivity diffusion permeability 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-79-30054.

REFERENCES

  1. 1.
    S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Int. J. Hydrogen Energy 35, 9349 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Bose, T. Kuila, T. X. Hien Nguyen, et al., Prog. Polym. Sci. 36, 813 (2011).CrossRefGoogle Scholar
  3. 3.
    E. Yu. Safronova and A. B. Yaroslavtsev, Pet. Chem. 56, 281 (2016).CrossRefGoogle Scholar
  4. 4.
    Fuel Cell Handbook, 7th Ed. (U. S. Department of Energy, Morgantown, 2004).Google Scholar
  5. 5.
    I. A. Stenina and A. B. Yaroslavtsev, Pure Appl. Chem. 89, 1185 (2017).CrossRefGoogle Scholar
  6. 6.
    K. A. Mauritz and R. B. Moore, Chem. Rev. 104, 4535 (2004).CrossRefGoogle Scholar
  7. 7.
    A. Kusoglu and A. Z. Weber, Chem. Rev. 117, 987 (2017).CrossRefGoogle Scholar
  8. 8.
    Deuk Ju Kim, Min Jae Jo, and Sang Yong Nam, J. Ind. Eng. Chem. 21, 36 (2015).CrossRefGoogle Scholar
  9. 9.
    C. M. Branco, A. El-Kharouf, and S. Du, in Reference Module in Materials Science and Materials Engineering (Elsevier, Amsterdam, 2017).Google Scholar
  10. 10.
    T. Xu, J. Membr. Sci. 263, 1 (2005).CrossRefGoogle Scholar
  11. 11.
    Y. Zhang, H. Zhang, C. Bi, and X. Zhu, Electrochim. Acta 53, 4096 (2008).CrossRefGoogle Scholar
  12. 12.
    A. B. Yaroslavtsev, Russ. Chem. Rev. 85, 1255 (2016).CrossRefGoogle Scholar
  13. 13.
    K. D. Kreuer, M. Schuster, B. Obliers, et al. J. Power Sources 178, 499 (2008).CrossRefGoogle Scholar
  14. 14.
    P. Xiao, J. Li, H. Tang, et al., J. Membr. Sci. 442, 65 (2013).CrossRefGoogle Scholar
  15. 15.
    J. Li, M. Pan, and H. Tang, RSC Adv. 4, 3944 (2014).Google Scholar
  16. 16.
    Y.-C. Park, K. Kakinuma, H. Uchida, et al., J. Power Sources 275, 384 (2015).CrossRefGoogle Scholar
  17. 17.
    X. Luo and S. Holdcroft, J. Membr. Sci. 520, 155 (2016).CrossRefGoogle Scholar
  18. 18.
    K. R. Mugtasimova, A. P. Melnikov, E. A. Galitskaya, et al., Ionics (2018). https://link.spriger.com/article/10.1007/s11581-018-2531-5.Google Scholar
  19. 19.
    E. A. Galitskaya, E. V. Gerasimova, Yu. A. Dobrovol’skii, et al., Tech. Phys. Lett. 44, 570 (2018).CrossRefGoogle Scholar
  20. 20.
    E. Yu. Safronova, A. K. Osipov, and A. B. Yaroslavtsev, Pet. Chem. 58, 28 (2018).CrossRefGoogle Scholar
  21. 21.
    A. Skulimowska, M. Dupont, M. Zaton, et al., Int. J. Hydrogen Energy 39, 6307 (2014).CrossRefGoogle Scholar
  22. 22.
    A. B. Yaroslavtsev, Yu. A. Karavanova, and E. Yu. Sa-fronova, Pet. Chem. 51, 473 (2011).CrossRefGoogle Scholar
  23. 23.
    E. Yu. Safronova, A. K. Osipov, A. E. Baranchikov, and A. B. Yaroslavtsev, Inorg. Mater. 51, 1157 (2015).CrossRefGoogle Scholar
  24. 24.
    A. B. Yaroslavtsev, Inorg. Mater. 48, 1193 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. K. Osipov
    • 1
    • 2
    Email author
  • I. A. Prikhno
    • 1
    • 2
  • A. B. Yaroslavtsev
    • 1
    • 2
  1. 1.Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of SciencesMoscowRussia
  2. 2.Institute of Problems of Chemical Physics, Russian Academy of SciencesChernogolovkaRussia

Personalised recommendations