Advertisement

Petroleum Chemistry

, Volume 58, Issue 13, pp 1107–1112 | Cite as

Study of Mass Transfer during Reverse-Osmosis Demineralization of Dilute Solutions of Strong Electrolytes

  • S. I. AnisimovEmail author
  • N. S. Orlov
Article
  • 9 Downloads

Abstract

The results of studies of mass transfer through a polyamide composite reverse-osmosis membrane in the demineralization of dilute solutions of six strong electrolytes are summarized. The relation of the electrolyte concentration at the surface of the reverse-osmosis membrane, at which its true selectivity tends to zero, to the specific water flux and the sum of the hydration numbers of the cations and anions of this electrolyte has been revealed. It has been shown that at a low salinity of the feed solution, the product of the molar electrolyte flux and the sum of the hydration numbers of its cations and anions for the test membrane is almost independent of the electrolyte type. An analysis of the dependence of the solute flux on the transmembrane pressure, concentration, and temperature in the electrolyte concentration range of 0.2 to 20 mol/m3 in the feed solution, as well as the experimentally determined activation energy of the NaCl flux, has led to the conclusion that there is an additive component of the electrolyte flux, whose contribution to the total flux is insignificant at high concentrations and becomes determining at concentrations below 2–5 mol/m3.

Keywords:

reverse osmosis deionized water dilute electrolyte solutions 

Notes

REFERENCES

  1. 1.
    V. I. Fedorenko, I. E. Kiryakin, and S. S. Burkovskii, Krit. Tekhnol: Membr., No. 4, 5 (2004).Google Scholar
  2. 2.
    K. P. Lee, T. C. Arnot, and D. Mattia, J. Membr. Sci. 370, 1016 (2011).CrossRefGoogle Scholar
  3. 3.
    D. Nikolaeva, C. Langner, A. Ghanem, et al., J. Membr. Sci. 476, 1016 (2015).CrossRefGoogle Scholar
  4. 4.
    G. M. Geise, D. R. Paul, and B. D. Freeman, Prog. Polym. Sci. 39, 1016 (2014).CrossRefGoogle Scholar
  5. 5.
    A. E. Yaroshchuk, Adv. Colloid Interface Sci. 85, 1016 (2000).CrossRefGoogle Scholar
  6. 6.
    C. Bartels, R. Franks, S. Rybar, et al., Desalination 184, 1016 (2005).CrossRefGoogle Scholar
  7. 7.
    A. E. Yaroshchuk, Y. Zhu, M. Bondarenko, and M. L. Bruening, Langmuir 32, 1021 (2016).CrossRefGoogle Scholar
  8. 8.
    Yu. I. Dytnerskii, A. A. Svittsov, and Yu. I. Zhilin, Teor. Osn. Khim. Technol. 14, 930 (1980).Google Scholar
  9. 9.
    C. P. Koutsoua, S. G. Yiantsiosa, and A. J. Karabelas, J. Membr. Sci. 326, 1016 (2009).Google Scholar
  10. 10.
    N. S. Orlov, Doctoral Dissertation in Engineering (Moscow, 2000).Google Scholar
  11. 11.
    Yu. I. Dytnerskii, R. G. Kocharov, and E. P. Morgunova, in Proceedings of V All-Union Conference on Electrochemistry (Moscow, 1974), Vol. 2, p. 324 [in Russian].Google Scholar
  12. 12.
    E. R. Nightingale, J. Phys. Chem. 63, 1021 (1959).CrossRefGoogle Scholar
  13. 13.
    N. B. Ferapontov, S. N. Vdovina, A. N. Gagarin, et al., Kond. Sredy Mezhfaz. Granitsy 13, 208 (2011).Google Scholar
  14. 14.
    T. Kawakami, M. Nakada, H. Shimura, et al., Polym. J. 50, 1038 (2018).CrossRefGoogle Scholar
  15. 15.
    T. Wei, L. Zhang, H. Zhao, et5 al., J. Phys. Chem. 120, 1021 (2016).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Department of Membrane Technology, Mendeleev University of Chemical TechnologyMoscowRussia

Personalised recommendations