Advertisement

Petroleum Chemistry

, Volume 58, Issue 13, pp 1159–1164 | Cite as

Exchange Sorption and Electrical Conductivity of Heterogeneous Anion-Exchange Membranes in Mixed Sodium Hydroxide/Sodium Naphthenate and Sodium Sulfate/Sodium Nitrate Electrolyte Solutions

  • A. R. AchohEmail author
  • F. B. Pribytkov
  • A. Yu. But
  • V. I. Zabolotsky
Article
  • 3 Downloads

Abstract

The physicochemical properties of MA-40 and MA-41 ion-exchange membranes have been studied in two systems with different electrolyte compositions. The following test systems have been chosen for the study: anion-exchange membrane/mixed solution of sodium hydroxide and sodium naphthenate and anion-exchange membrane/mixed solution of sodium sulfate and sodium nitrate. Ion-exchange sorption and electrical conductivity have been studied in these systems. It has been found that both of the membranes are more selective for hydroxide ions than for naphthenic acid anions in the system with sodium naphthenate. A conductor–insulator percolation transition has been observed in the МА-40 and MA-41 membranes saturated with organic counterions. The mobilities and diffusion coefficients of hydroxide, nitrate, and sulfate ions in the test membranes haves been calculated.

Keywords:

membrane ion exchange selectivity electrical conductivity electrodialysis naphthenic acids percolation mobility 

Notes

ACKNOWLEDGMENTS

This study was supported by the Ministry of Education and Science of the Russian Federation, project no. 10.3091.2017/4.6.

REFERENCES

  1. 1.
    L. V. Ivanova, V. N. Koshelev, N. A. Sokova, et al., Tr. Ross. Gos. Univ. Nefti Gaz Imeni Gubkina, No. 1, 68 (2013).Google Scholar
  2. 2.
    I. Yu. Batueva, A. A. Gaile, and Yu. V. Pokonova, Petroleum Chemistry (Khimiya, Leningrad, 1984) [in Russian].Google Scholar
  3. 3.
    R. Edwin, J. Littmann, and M. Klotz, Chem. Rev. 30, 97 (1942).CrossRefGoogle Scholar
  4. 4.
    A. B. Yaroslavtsev, Membranes and Membrane Technologies (Nauchnyi Mir, Moscow, 2013) [in Russian].Google Scholar
  5. 5.
    A. B. Yaroslavtsev and V. V. Nikonenko, Nanotechnol. Russ. 4, 137 (2009).CrossRefGoogle Scholar
  6. 6.
    A. R. Achokh, S. S. Mel’nikov, and V. I. Zabolotskii, in Proceedings of “Fagran-2015” Conference on Physicochemical Processes in Condensed Media and at Interfaces (Voronezh, 2015), p. 430.Google Scholar
  7. 7.
    F. Pribytkov, V. Zabolotsky, and A. Achoh, in Proceedings of International Conference on Membrane and Electromembrane Processes (Kransodar, 2015), Book of Abstracts, p. 240.Google Scholar
  8. 8.
    N. P. Berezina, N. A. Kononenko, G. A. Dvorkina, and N. V. Shel’deshov Physicochemical Properties of Ion-Exchange Materials (Kubanskii Gos. Univ., Krasnodar, 1999) [in Russian].Google Scholar
  9. 9.
    V. I. Zabolotskii, N. P. Gnusin, and G. M. Sheretova, Zh. Fiz. Khim. 59, 2467 (1985).Google Scholar
  10. 10.
    N. P. Berezina and L. V. Karpenko, Colloid J. 62, 676 (2000).CrossRefGoogle Scholar
  11. 11.
    A. L. Efros, Physics and Geometry of Disorder (Mir, Moscow, 1986).Google Scholar
  12. 12.
    N. A. Kononenko, N. P. Berezina, and S. A. Shkir-skaya, Colloid J. 67, 437 (2005).CrossRefGoogle Scholar
  13. 13.
    V. I. Zabolotskii and V. V. Nikonenko, Ion Transport in Membranes (Nauka, Moscow, 1996) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. R. Achoh
    • 1
  • F. B. Pribytkov
    • 1
  • A. Yu. But
    • 1
  • V. I. Zabolotsky
    • 1
  1. 1.Kuban State UniversityKrasnodarRussia

Personalised recommendations