Advertisement

Petroleum Chemistry

, Volume 58, Issue 11, pp 923–933 | Cite as

Nanocellulose as a Component of Ultrafiltration Membranes

  • A. O. Malakhov
  • T. S. Anokhina
  • D. A. Petrova
  • V. A. Vinokurov
  • A. V. Volkov
Article
  • 5 Downloads

Abstract

Nanocellulose is a natural nanomaterial produced by the mechanical disintegration or acid hydrolysis of cellulose fibers. In recent years, nanocellulose has been extensively studied worldwide as a natural biodegradable modifier of synthetic polymer materials. The review describes the use of nanocellulose to improve the transport properties of ultrafiltration membranes used for the purification of aqueous media.

Keywords:

nanocellulose ultrafiltration polymer membranes modification 

Notes

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education and Science of the Russian Federation, project 14.577.21.0265 (unique project identifier RFMEFI57717X0265).

REFERENCES

  1. 1.
    L. J. Zeman and A. L. Zydney, Microfiltration and Ultrafiltration: Principles and Applications, (Marcel Dekker, New York, 1996).Google Scholar
  2. 2.
    M. Cheryan, Ultrafiltration and Microfiltration Handbook (CRC, Boca Raton, 1998).CrossRefGoogle Scholar
  3. 3.
    A. A. Panteleev, B. E. Ryabchikov, O. V. Khoruzhii, et al., Membrane Separation Technologies in Industrial Water Treatment (DeLi Plyus, Moscow, 2012) [in Russian].Google Scholar
  4. 4.
    R. Mahendran, R. Malaisamy, and D. R. Mohan, Polym. Adv. Technol. 15, 149 (2004).CrossRefGoogle Scholar
  5. 5.
    H.-J. Li, Y.-M. Cao, J.-J. Qin, et al., J. Membr. Sci. 279, 328 (2006).CrossRefGoogle Scholar
  6. 6.
    H. Ma, C. Burger, B. S. Hsiao, and B. Chu, J. Mater. Chem. 21, 7501 (2011).Google Scholar
  7. 7.
    B. Ma, A. Qin, X. Li, and X. C. He, Ind. Eng. Chem. Res. 52, 9417 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Livazovic, Z. Li, A. Behzad, et al., J. Membr. Sci. 490, 282 (2015).CrossRefGoogle Scholar
  9. 9.
    V. K. Thakur and S. I. Voicu, Carbohydrate Polym. 146, 148 (2016).CrossRefGoogle Scholar
  10. 10.
    X.-L. Li, L.-P. Zhu, B.-K. Zhu, and Y.-Y. Xu, Sep. Purif. Technol. 83, 66 (2011).CrossRefGoogle Scholar
  11. 11.
    T. S. Anokhina, A. A. Yushkin, I. S. Makarov, et al., Pet. Chem. 56, 1097 (2016).CrossRefGoogle Scholar
  12. 12.
    T. S. Anokhina, T. S. Pleshivtseva, V. Ya. Ignatenko, et al., Pet. Chem. 57, 477 (2017).CrossRefGoogle Scholar
  13. 13.
    F. M. Sukma and P. Z. Culfaz-Emecen, J. Membr. Sci. 545, 329 (2018).CrossRefGoogle Scholar
  14. 14.
    J. Mansouri, S. Harrisson, and V. Chen, J. Mater. Chem. 20, 4567 (2010).CrossRefGoogle Scholar
  15. 15.
    V. Kochkodan, D. J. Johnson, and N. Hilal, Adv. Colloid Interface Sci. 206, 116 (2014).CrossRefGoogle Scholar
  16. 16.
    S. Kheirieh, M. Asghari, and M. Afsari, Rev. Chem. Eng. (2017). doi org/ doi 10.1515/revce-2017-0011Google Scholar
  17. 17.
    C. Dizman, M. A. Tasdelen, and Y. Yagci, Polym. Int. 62, 991 (2013).Google Scholar
  18. 18.
    K. J. Kim, A. G. Fane, and C. J. D. Fell, Desalination 70, 229 (1988).CrossRefGoogle Scholar
  19. 19.
    M. Nyström, J. Membr. Sci. 44, 183 (1989).CrossRefGoogle Scholar
  20. 20.
    A. V. R. Reddy, D. J. Mohan, A. Bhattacharya, et al., J. Membr. Sci. 214, 211 (2003).CrossRefGoogle Scholar
  21. 21.
    B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 309, 209 (2008).CrossRefGoogle Scholar
  22. 22.
    B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, J. Membr. Sci. 315, 36 (2008).CrossRefGoogle Scholar
  23. 23.
    R. Lakra, R. Saranya, Y. L. Thuyavan, et al., Sep. Purif. Technol. 118, 853 (2013).CrossRefGoogle Scholar
  24. 24.
    R. Kumar, A. M. Isloor, A. F. Ismail, and T. Matsuura, J. Membr. Sci. 440, 140 (2013).CrossRefGoogle Scholar
  25. 25.
    A. Pagidi, R. Saranya, G. Arthanareeswaran, et al., Desalination 344, 280 (2014).CrossRefGoogle Scholar
  26. 26.
    M. Z. Yunos, Z. Harun, H. Basri, and A. F. Ismail, Desalination 333, 36 (2014).CrossRefGoogle Scholar
  27. 27.
    E. Eren, A. Sarihan, B. Eren, et al., J. Membr. Sci. 475, 1 (2015).CrossRefGoogle Scholar
  28. 28.
    N. Sharma and M. K. Purkait, J. Membr. Sci. 522, 202 (2017).CrossRefGoogle Scholar
  29. 29.
    Y. Yang, H. Zhang, P. Wang, et al., J. Membr. Sci. 288, 231 (2007).CrossRefGoogle Scholar
  30. 30.
    S. Zhao, Z. Wang, X. Wei, et al., J. Membr. Sci. 385/386, 251 (2011).CrossRefGoogle Scholar
  31. 31.
    J. Yin, G. Zhu, and B. Deng, J. Membr. Sci. 437, 237 (2013).CrossRefGoogle Scholar
  32. 32.
    L. F. Hancock, S. M. Fagan, and M. S. Ziolo, Biomaterials 21, 725 (2000).CrossRefGoogle Scholar
  33. 33.
    Y. Habibi, L. A. Lucia, and O. J. Rojas, Chem. Rev. 110, 3479 (2010).CrossRefGoogle Scholar
  34. 34.
    R. J. Moon, A. Martini, J. Nairn, et al., Chem. Soc. Rev. 40, 3941 (2011).CrossRefGoogle Scholar
  35. 35.
    A. Dufresne, Nanocellulose: From Nature to High Performance Tailored Materials (Walter de Gruyter, Berlin, 2012).CrossRefGoogle Scholar
  36. 36.
    Handbook of Nanocellulose and Cellulose Nanocomposites, Ed. by H. Kargarzadeh, I. Ahmad, S. Thomas, and A. Dufresne (Wiley–VCH, Weinheim, 2017).Google Scholar
  37. 37.
    N. Saban and M. Jawaid, Celluluse-Reinforced Composites: Production, Properties and Applications, Ed. by M. Jawaid, S. Boufi, and A. Khalil H.P.S. (Elsevier, Amsterdam, 2017), p. 89.Google Scholar
  38. 38.
    M. Minelli, M. G. Baschetti, F. Doghieri, et al., J. Membr. Sci. 358, 67 (2010).CrossRefGoogle Scholar
  39. 39.
    T. Wüstenberg, Cellulose and Cellulose Derivatives in the Food Industry (Wiley–VCH, Weinheim, 2015).Google Scholar
  40. 40.
    P. Willberg-Keyriläinen, J. Vartiainen, J. Pelto, and J. Ropponen, Carbohydrate Polym. 170, 160 (2017).CrossRefGoogle Scholar
  41. 41.
    H. Zhang, J. Liu, M. Guan, Z. Shang, Yi. Sun, Z. Lu, H. Li, X. An, H. Liu, ACS Sustainable Chem. Eng. 6, 4838 (2018).Google Scholar
  42. 42.
    L. Ansaloni, J. Salas-Gay, S. Ligi, and M. G. Baschetti, J. Membr. Sci. 522, 216 (2017).CrossRefGoogle Scholar
  43. 43.
    D. Venturi, D. Grupkovic, L. Sisti, and M. G. Bas-chetti, J. Membr. Sci. 548, 263 (2018).CrossRefGoogle Scholar
  44. 44.
    A. W. Carpenter, C.-F. de Lannoy, and M. R. Wiesner, Environ. Sci. Technol. 49, 5277 (2015).CrossRefGoogle Scholar
  45. 45.
    Y. Ying, W. Ying, Q. Li, et al., Appl. Mater. Today 7, 144 (2017).CrossRefGoogle Scholar
  46. 46.
    M. Sadrzadeh and S. Bhattacharjee, J. Membr. Sci. 441, 31 (2013).CrossRefGoogle Scholar
  47. 47.
    A. V. Bildyukevich, T. V. Plisko, A. S. Liubimova, et al., J. Membr. Sci. 524, 537 (2017).CrossRefGoogle Scholar
  48. 48.
    X. Qiu, H. Yu, M. Karunakaran, et al., ACS Nano 7, 768 (2013).CrossRefGoogle Scholar
  49. 49.
    X. Ma, Y. Su, Q. Sun, et al., J. Membr. Sci. 292, 116 (2007).CrossRefGoogle Scholar
  50. 50.
    Y. Chen, M. Wei, and Y. Wang, J. Membr. Sci. 505, 53 (2016).CrossRefGoogle Scholar
  51. 51.
    Y. Chen, M. Wei, and Y. Wang, J. Membr. Sci. 525, 342 (2017).CrossRefGoogle Scholar
  52. 52.
    M. I. Voronova, T. N. Lebedeva, O. V. Surov, and A. G. Zakharov, Khim. Rast. Syr’ya 2, 49 (2013).Google Scholar
  53. 53.
    S. I. Kuzina, I. A. Shilova, V. F. Ivanov, et al., High Energy Chem. 47, 194 (2013).CrossRefGoogle Scholar
  54. 54.
    L. N. Gerke, Nats. Assots. Uchenykh 3, 39 (2015).Google Scholar
  55. 55.
    Yi. Wang, X. Wei, Li Jihua Li, F. Wang, Q. Wang, J. Chen, L. Lingxue Kong L., Fibers and Polymers, 16, 572 (2015).Google Scholar
  56. 56.
    P. Phanthong, S. Karnjanakom, P. Reubroycharoen, X. Hao, A. Abudula, G. Guan, Cellulose 24, 2083 (2017).Google Scholar
  57. 57.
    P. Daraei, N. Ghaemi, H. S. Ghari, and M. Norouzi, Cellulose 23, 2025 (2016).CrossRefGoogle Scholar
  58. 58.
    Q. G. Zhang, C. Deng, F. Soyekwo, et al., Adv. Funct. Mater. 26, 792 (2016).CrossRefGoogle Scholar
  59. 59.
    S. Noorani, J. Simonsen, and S. Atre, Cellulose 14, 577 (2007).CrossRefGoogle Scholar
  60. 60.
    P. Daraei, N. Ghaemi, and H. S. Ghari, Cellulose 24, 915 (2017).CrossRefGoogle Scholar
  61. 61.
    B. S. Lalia, V. Kochkodan, R. Hashaikeh, and N. Hilal, Desalination 326, 77 (2013).CrossRefGoogle Scholar
  62. 62.
    P. Qu, H. Tang, Y. Gao, et al., Bioresources 5, 2323 (2010).Google Scholar
  63. 63.
    H. Bai, X. Wang, Y. Zhou, and L. Zhang, Prog. Nat. Sci.: Mater. Int. 22, 250 (2012).CrossRefGoogle Scholar
  64. 64.
    H. Bai, Y. Zhou, and L. Zhang, Adv. Polym. Technol. 34, 21471 (2015).CrossRefGoogle Scholar
  65. 65.
    H. Bai, X. Wang, H. Sun, and L. Zhang, Desalin. Water Treat. 53, 2882 (2015).CrossRefGoogle Scholar
  66. 66.
    S. Li, Y. Gao, H. Bai, et al., Bioresources 6, 1670 (2011).Google Scholar
  67. 67.
    Z. Ding, L. Zhong, X. Wang, and L. Zhang, High Perform. Polym. 28, 1192 (2016).CrossRefGoogle Scholar
  68. 68.
    Z. Ding, X. Liu, Y. Liu, and L. Zhang, Polymers 8, 349 (2016).CrossRefGoogle Scholar
  69. 69.
    D. Zhang, A. Karkooti, L. Liu, et al., J. Membr. Sci. 549, 350 (2018).CrossRefGoogle Scholar
  70. 70.
    S. Al Aani, C. J. Wright, M. A. Atieh, and N. Hilal, Desalination 401, 1 (2017).CrossRefGoogle Scholar
  71. 71.
    L. Zhong, Z. Ding, B. Li, and L. Zhang, Bioresources 10, 2936 (2015).Google Scholar
  72. 72.
    L. Kong, D. M. Zhang, Z. Shao, et al., Desalination 332, 117 (2014).CrossRefGoogle Scholar
  73. 73.
    J. Lv, G. Zhang, H. Zhang, and F. Yang, Carbohydrate Polym. 174, 190 (2017).CrossRefGoogle Scholar
  74. 74.
    L. Bai, N. Bossa, F. Qu, et al., Environ. Sci. Technol. 51, 253 (2017).CrossRefGoogle Scholar
  75. 75.
    A. Mautner, K.-Y. Lee, T. Tammelin, et al., React. Funct. Polym. 86, 209 (2015).CrossRefGoogle Scholar
  76. 76.
    Z. Karim, S. Claudpierre, M. Grahn, et al., J. Membr. Sci. 514, 418 (2016).CrossRefGoogle Scholar
  77. 77.
    N. Peng, N. Widjojo, P. Sukitpaneenit, et al., Prog. Polym. Sci. 37, 1401 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. O. Malakhov
    • 1
  • T. S. Anokhina
    • 1
  • D. A. Petrova
    • 2
  • V. A. Vinokurov
    • 2
  • A. V. Volkov
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia
  2. 2.Gubkin State University of Oil and GasMoscowRussia

Personalised recommendations