Advertisement

Petroleum Chemistry

, Volume 58, Issue 11, pp 941–948 | Cite as

Polyheptylmethylsiloxane—A Novel Material for Removal of Oxygenates from Water by Pervaporation

  • E. A. Grushevenko
  • I. A. Podtynnikov
  • G. S. Golubev
  • V. V. Volkov
  • I. L. Borisov
Article
  • 129 Downloads

Abstract

A new membrane for the removal of oxygenates from wastewater by pervaporation has been prepared on the basis of polymethylsiloxane bearing 1-heptene as a substituent on the side chain. The synthesized membrane material has been characterized using Fourier-transform IR spectroscopy, and its sorption properties with respect to C2–C4 alcohols have been examined. It has been found that polyheptylmethylsiloxane (PHepMS) has a greater affinity for the C3 and C4 alcohols to be separated than its closest analogue known from the literature (polyoctylmethylsiloxane (POMS)), which makes the PHepMS membrane promising for the pervaporative separation of aqueous solutions of these alcohols. The pervaporation properties of PHepMS have been studied for the first time, and its separation characteristics have been compared with those of the commercial highly permeable membrane polymer polydimethylsiloxane (PDMS) and POMS in relation to the problem of recovery of n-butanol, n-propanol, and ethanol from dilute aqueous solutions by vacuum pervaporation. It has been shown that PDMS has the highest separation efficiency for n-propanol–water mixture and PHepMS is the most promising membrane material for the pervaporative separation of water–butanol mixtures. Having a butanol flux comparable to that through PDMS, the PHepMS membrane demonstrates a record-breaking value of butanol/water separation factor of 97.

Keywords:

polyheptylmethylsiloxane polyoctylmethylsiloxane pervaporation recovery of oxygenates from water separation of water–alcohol mixtures 

Notes

ACKNOWLEDGMENTS

This work was supported by the Russian Science Foundation, project no. 17-79-20296. The authors are grateful to G.N. Bondarenko for making FTIR measurements and to the Center for Collective Use at the Topchiev Institute for the equipment provided.

REFERENCES

  1. 1.
    R. A. Deeb, K. H. Chu, T. Shih, et al., Environ. Eng. Sci. 20, 433 (2003).CrossRefGoogle Scholar
  2. 2.
    L. C. Davis and L. E. Erickson, Environ. Prog. 23, 243 (2004).CrossRefGoogle Scholar
  3. 3.
    M. M. Zein, P. X. Pinto, S. Garcia-Blanco, et al., Biodegradation 17, 57 (2006).CrossRefPubMedGoogle Scholar
  4. 4.
    G. V. Porutskii, Biochemical Treatment of Wastewater from Organic Productions (Khimiya, Moscow, 1975) [in Russian].Google Scholar
  5. 5.
    M. J. Tijmensen, A. P. Faaij, C. N. Hamelinck, and M. R. Van Hardeveld, Biomass Bioenergy 23, 129 (2002).CrossRefGoogle Scholar
  6. 6.
    Mémento Technique de l’Eau, 10th Ed. (Degrémont, Paris, 2005), Vol. 1.Google Scholar
  7. 7.
    F. Fayolle, J. P. Vandecasteele, and F. Monot, Appl. Microbiol. Biotechnol. 56, 339 (2001).CrossRefPubMedGoogle Scholar
  8. 8.
    H. Kölbel and M. Ralek, Catal. Rev. 21, 225 (1980).CrossRefGoogle Scholar
  9. 9.
    A. de Klerk, Fischer–Tropsch Refining (Weinheim, Wiley–VCH, 2012).Google Scholar
  10. 10.
    A. Yu. Krylova, Yu. G. Kryazhev, M. V. Kulikova, et al., Solid Fuel Chem. 45, 32 (2011).Google Scholar
  11. 11.
    T. C. Ezeji, N. Qureshi, and H. P. Blaschek, Chem. Rec. 4, 305 (2004).CrossRefPubMedGoogle Scholar
  12. 12.
    G. Liu, W. Wei, and W. Jin, ACS Sustain. Chem. Eng. 2, 546 (2013).CrossRefGoogle Scholar
  13. 13.
    L. M. Vane, J. Chem. Technol. Biotechnol. 80, 603 (2005).CrossRefGoogle Scholar
  14. 14.
    T. Ikegami, H. Yanagishita, D. Kitamoto, et al., Biotechnol. Tech. 11, 921 (1997).CrossRefGoogle Scholar
  15. 15.
    A. Rozicka, J. Niemisto, R. L. Keiski, and W. Kujawski, J. Membr. Sci. 453, 108 (2014).CrossRefGoogle Scholar
  16. 16.
    A. Rom and A. Friedl, Sep. Purif. Technol. 170, 40 (2016).CrossRefGoogle Scholar
  17. 17.
    I. L. Borisov, N. V. Ushakov, V. V. Volkov, and E. Sh. Finkel’shtein, Pet. Chem. 56, 800 (2016).Google Scholar
  18. 18.
    J. Schultz and K.-V. Peinemann, J. Membr. Sci. 110, 37 (1996).CrossRefGoogle Scholar
  19. 19.
    M. Žák, M. Klepic, L. Č. Štastná, et al., Sep. Purif. Technol. 151, 108 (2015).CrossRefGoogle Scholar
  20. 20.
    I. L. Borisov, A. O. Malakhov, V. S. Khotimsky, et al., J. Membr. Sci. 466, 322 (2014).CrossRefGoogle Scholar
  21. 21.
    W. Van Hecke and H. de Wever, J. Membr. Sci. 540, 321 (2017).CrossRefGoogle Scholar
  22. 22.
    J. Börjesson, H. O. E. Karlsson, and G. Trägårdh, J. Membr. Sci. 119, 229 (1996).CrossRefGoogle Scholar
  23. 23.
    S. A. Stern, V. M. Shah, and B. J. Hardy, J. Polym. Sci., Part B: Polym. Phys. 25, 1263 (1987).CrossRefGoogle Scholar
  24. 24.
    E. A. Grushevenko, I. L. Borisov, D. S. Bakhtin, et al., Pet. Chem. 57, 334 (2017).CrossRefGoogle Scholar
  25. 25.
    S. Darvishmanesh, J. Degréve, and B. Van der Bruggen, Chem. Eng. Sci. 64, 3914 (2009).CrossRefGoogle Scholar
  26. 26.
    R. W. Baker, J. G. Wijmans, and Y. Huang, J. Membr. Sci. 348, 346 (2010).CrossRefGoogle Scholar
  27. 27.
    A. Kujawska, K. Knozowska, J. Kujawa, and W. Kujawski, Sep. Purif. Technol. 159, 68 (2016).CrossRefGoogle Scholar
  28. 28.
    I. L. Borisov, G. S. Golubev, V. P. Vasilevsky, et al., J. Membr. Sci. 523, 291 (2017).CrossRefGoogle Scholar
  29. 29.
    S. Darvishmanesh, J. Degreve, and B. Van der Bruggen, Phys. Chem. Chem. Phys. 12, 13333 (2010).CrossRefPubMedGoogle Scholar
  30. 30.
    D. W. van Krevelen and K. Nijenhuis, Properties of Polymers, 4th Ed. (Elsevier Science, Amsterdam, 2009).CrossRefGoogle Scholar
  31. 31.
    E. S. Tarleton, J. P. Robinson, and J. J. W. Na, J. Membr. Sci. 261, 129 (2005).CrossRefGoogle Scholar
  32. 32.
    C. M. Hansen, Hansen Solubility Parameters: A User’s Handbook, 2nd Ed. (CRC, Boca Raton, 2007).CrossRefGoogle Scholar
  33. 33.
    M. Bennett, B. J. Brisdon, R. England, and R. W. Field, J. Membr. Sci. 137, 63 (1997).CrossRefGoogle Scholar
  34. 34.
    B. Van der Bruggen and P. Luis, Progress in Filtration and Separation, Ed. by E. S. Tarleton (Academic, London, 2015), p. 101.Google Scholar
  35. 35.
    D. J. O’Brien, L. H. Roth, and A. J. McAloon, J. Membr. Sci. 166, 105 (2000).CrossRefGoogle Scholar
  36. 36.
    L. M. Vane, Sep. Sci. Technol. 48, 429 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • E. A. Grushevenko
    • 1
  • I. A. Podtynnikov
    • 1
  • G. S. Golubev
    • 1
  • V. V. Volkov
    • 1
  • I. L. Borisov
    • 1
  1. 1.Topchiev Institute of Petrochemical Synthesis, Russian Academy of SciencesMoscowRussia

Personalised recommendations