Petroleum Chemistry

, Volume 58, Issue 3, pp 190–196 | Cite as

Influence of the Nature of Metals and Modifying Additives on Changes in the Structure of Heavy Oil in a Catalytic Aquathermolysis System

  • G. P. KayukovaEmail author
  • D. A. Feoktistov
  • A. N. Mikhailova
  • I. P. Kosachev
  • R. Z. Musin
  • A. V. Vakhin


The direction of catalytic aquathermolysis processes involving high-molecular-weight components of heavy oil has been revealed in model experiments, depending on the metal nature and the conditions of the experiments carried out at 300°C in neutral and carbon dioxide media, using oil-soluble carboxylates of the transition metals nickel, iron, cobalt, and copper as a catalyst. The yield and quality of the products formed in the presence of individual metals and their compositions have been determined. Propanol and tetralin have been studied as modifying additives. The viscosity of heavy oil in a carbon dioxide medium has been significantly reduced by using an iron-, cobalt-, and copper-containing catalyst composition together with the propanol additive, as a result of an increase in the amount of saturated and aromatic hydrocarbons and a decrease in the resin content in its composition. An increase in the value of the C13–C17/C18–C22 index can serve as a parameter for monitoring the progress of catalytic aquathermolysis processes.


high-viscosity heavy oil composition properties aquathermolysis and catalytic aquathermolysis processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. N. Makarevich, N. I. Iskritskaya, and S. A. Bogoslovskii, Neftegaz. Tekhol., Theor. Prakt., 5 (2) (2010). Scholar
  2. 2.
    R. Kh. Muslimov, G. V. Romanov, G. P. Kayukova, et al., Neft’. Gaz. Novatsii, No. 2, 21 (2012).Google Scholar
  3. 3.
    R. S. Khisamov, Advanced Oilfield Development Technologies (Nedra, Moscow, 2004) [in Russian].Google Scholar
  4. 4.
    G. P. Kayukova, G. V. Romanov, R. Kh. Muslimov, et al., Chemistry and Geochemistry of Permian Bitumens of Tatarstan (Nauka, Moscow, 1999) [in Russian].Google Scholar
  5. 5.
    B. V. Uspenskii and S. E. Valeeva. Geology of Natural Bitumen Deposits in Tatarstan (PR Gard, Kazan, 2008) [in Russian].Google Scholar
  6. 6.
    G. P. Kayukova, S. M. Petrov, and B. V. Uspenskii, Properties of Permian Heavy Oils and Bitumens of Tatarstan in Natural and Anthropogenic Processes (GEOS, Moscow, 2015) [in Russian].Google Scholar
  7. 7.
    A. N. Shakirov, Geological Principles of Enhanced Oil Recovery from Paleozoic Pay Formations of Tatarstan (Nedra, St. Petersburg, 2003) [in Russian].Google Scholar
  8. 8.
    A. K. Kurochkin and R. R. Khazeev, Sfera, Neft Gaz 46, 52 (2015).Google Scholar
  9. 9.
    (a) A. A. Gregoli and D. P. Rimmer, US Patent No. 6016868 (2002).Google Scholar
  10. 9b.
    (b) S. L. Wellington, A. M. Madgavkar, and R. C. Ryan, WO Patent No. 2003036030 (2003).Google Scholar
  11. 10.
    N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, et al., Khim. Tekhnol. Topl. Masel, No. 4, 30 (2014).Google Scholar
  12. 11.
    G. P. Kayukova, L. E. Foss, D. A. Feoktistov, et al., Pet. Chem. 57, 657 (2017).CrossRefGoogle Scholar
  13. 12.
    S. K. Maity, J. Ancheyta, and G. Marroquín, Energy Fuels 24, 2809 (2010).CrossRefGoogle Scholar
  14. 13.
    Y. Liu and H. Fan, Energy Fuels 16, 842 (2002).CrossRefGoogle Scholar
  15. 14.
    J. E. Langdon and C. H. Ware, RU Patent No. 2475637 (2011).Google Scholar
  16. 15.
    B. P. Tumanyan, N. N. Petrukhina, G. P. Kayukova, et al., Usp. Khim. 84, 1145 (2015).CrossRefGoogle Scholar
  17. 16.
    I. M. Abdrafikova, G. P. Kayukova, S. M. Petrov, et al., Pet. Chem. 55, 104 (2015).CrossRefGoogle Scholar
  18. 17.
    R. R. Vazirov, S. P. Larionov, S. A. Obukhova, et al., Oxidative Catalytic Conversion of Heavy Petroleum Feedstock (Reaktiv, Ufa, 1999) [in Russian].Google Scholar
  19. 18.
    S. N. Khadzhiev, S. A. Sagitov, A. S. Lyadov, et al., Pet. Chem. 54, 88 (2014).CrossRefGoogle Scholar
  20. 19.
    G. P. Kayukova, S. M. Petrov, and G. V. Romanov, Khim. Tekhnol. Topl. Masel, No. 4, 9 (2012).Google Scholar
  21. 20.
    O. S. Trukhina and I. A. Sintsov, Usp. Sovrem. Estestvozn., No. 3, 205 (2016).Google Scholar
  22. 21.
    N. U. Maganov, N. G. Ibragimov, R. S. Khisamov, et al., Georesursy, Geoenerg., Geopolit., No. 2, 12 (2014).Google Scholar
  23. 22.
    B. P. Tumanyan, N. N. Petrukhina, and K. O. Allogulova, Khim. Tekhnol. Topl. Masel, No. 1, 19 (2014).Google Scholar
  24. 23.
    V. Urazaev, Tekhnol. Elektron. Prom-st., No. 1, 44 (2006).Google Scholar
  25. 24.
    V. R. Antipenko, Thermal Transformations of Natural High-Sulfur Asphaltite: Geochemical and Engineering Aspects (Nauka, Novosibirsk, 2013) [in Russian].Google Scholar
  26. 25.
    L. Schwark and F. Frimmel, Chem. Geol. 206, 231 (2004).CrossRefGoogle Scholar
  27. 26.
    N. A. Krasnoyarova, D. Yu. Chirkova, and O. V. Serebrennikova, Vestn. Tomsk. Gos. Univ., No. 388, 235 (2014).Google Scholar
  28. 27.
    G. P. Kayukova, G. V. Romanov, I. M. Abdrafikova, and S. M. Petrov, Neft. Khoz., No. 9, 44 (2013).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • G. P. Kayukova
    • 1
    • 2
    Email author
  • D. A. Feoktistov
    • 1
    • 2
  • A. N. Mikhailova
    • 1
  • I. P. Kosachev
    • 1
  • R. Z. Musin
    • 1
  • A. V. Vakhin
    • 2
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazan, TatarstanRussia

Personalised recommendations