Petroleum Chemistry

, Volume 57, Issue 7, pp 618–629 | Cite as

A study of the catalytic steam cracking of heavy crude oil in the presence of a dispersed molybdenum-containing catalyst

  • O. O. Mironenko
  • G. A. Sosnin
  • P. M. Eletskii
  • Yu. K. Gulyaeva
  • O. A. Bulavchenko
  • O. A. Stonkus
  • V. O. Rodina
  • V. A. Yakovlev


The features of the steam cracking of heavy crude oil in the presence of a dispersed molybdenumcontaining catalyst are studied. The effect of water, the catalyst, and process conditions on the composition and properties of the products of the thermal conversion of heavy crude oil is determined in experiments on thermal cracking, steam cracking, catalytic cracking in the absence of water, and hydrocracking. A complex analysis of the resulting products is conducted; the catalyst-containing solid residue (coke) has been studied by XRD and HRTEM. The effect of the process temperature (425 and 450°C) and time on the yields and properties of the resulting products is studied. The efficiencies of hydrocracking and steam cracking for the production of upgraded low-viscosity semisynthetic oil are compared; the fundamental changes that occur in the catalyst during the studied processes are discussed. Some assumptions about the principle of the catalytic action of the molybdenum-containing catalyst in the steam cracking process are made.


dispersed catalyst molybdenum heavy crude oil catalytic steam cracking 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Sukhanov and Yu. E. Petrova, Neftegaz. Geol. Teor. Prakt., No. 3, 1 (2008).Google Scholar
  2. 2.
    P. M. Eletskii, O. O. Mironenko, G. A. Sosnin, O. A. Bulavchenko, O. A. Stonkus, and V. A. Yakovlev, Catal. Ind. 8, 328 (2016).CrossRefGoogle Scholar
  3. 3.
    A. G. Okunev, E. V. Parkhomchuk, A. I. Lysikov, P. D. Parunin, V. S. Semeikina, and V. N. Parmon, Rus. Chem. Rev. 84, 981 (2015).CrossRefGoogle Scholar
  4. 4.
    L. C. Castaneda, J. A. D. Munoz, and J. Ancheyta, Catal. Today 220–222, 248 (2014).CrossRefGoogle Scholar
  5. 5.
    B. P. Tumanyan, N. N. Petrukhina, G. P. Kayukova, D. K. Nurgaliev, L. E. Foss, and G. V. Romanov, Rus. Chem. Rev. 84, 1145 (2015).CrossRefGoogle Scholar
  6. 6.
    J. N. R. Olvera, G. J. Gutierrez, J. A. R. Serrano, A. M. Ovando, V. G. Febles, and L. D. B. Arceo, Catal. Commun. 43, 131 (2014).CrossRefGoogle Scholar
  7. 7.
    N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, B. P. Tumanyan, L. E. Foss, I. P. Kosachev, R. Z. Musin, A. I. Ramazanova, and A. V. Vakhin, Chem. Technol. Fuels Oils 50, 315 (2014).CrossRefGoogle Scholar
  8. 8.
    N. N. Petrukhina, Candidate’s Dissertation in Engineering (Moscow, 2014).Google Scholar
  9. 9.
    C. Wu, G. L. Lei, C. Yao, K. Sun, P. Gai, and Y. Cao, J. Fuel Chem. Technol. 38, 684 (2010).CrossRefGoogle Scholar
  10. 10.
    C. Kun, C. Yanling, L. Jian, Z. Xianmin, and D. Bingyang, Fuel Process. Technol. 104, 174 (2012).CrossRefGoogle Scholar
  11. 11.
    F. Zhao, Y. Liu, Y. Wu, X. Zhao, and L. Tan, Chem. Technol. Fuels Oils 48, 273 (2012).CrossRefGoogle Scholar
  12. 12.
    Y. H. Shokrlu and T. Babadagli, J. Petrol. Sci. Eng. 119, 210 (2014).CrossRefGoogle Scholar
  13. 13.
    S. Desouky, A. Alsabagh, M. Betiha, A. Badawi, A. Ghanem, and S. Khalil, Int. J. Chem. Mol. Nucl. Mater. Metall. Eng. 7, 638 (2013).Google Scholar
  14. 14.
    V. A. Lyubimenko, N. N. Petrukhina, B. P. Tumanyan, and I. M. Kolesnikov, Chem. Technol. Fuels Oils 50, 292 (2012).CrossRefGoogle Scholar
  15. 15.
    O. Muraza and A. Galadima, Fuel 157, 219 (2015).CrossRefGoogle Scholar
  16. 16.
    A. V. Galukhin, A. A. Erokhin, Y. N. Osin, and D. K. Nurgaliev, Energy Fuels 29, 4768 (2015).CrossRefGoogle Scholar
  17. 17.
    A. Yusufa, R. S. Al-Hajria, Y. M. Al-Waheibia, and B. Y. Jibrilb, J. Taiwan Inst. Chem. Eng. 67, 45 (2016).CrossRefGoogle Scholar
  18. 18.
    V. R. Antipenko and O. A. Golubina, Izv. Tomsk. Politekh. Univ. 309 (2), 174 (2006).Google Scholar
  19. 19.
    P. D. Clark, R. A. Clarke, J. B. Hyne, and K. L. Lesage, AOSTRAJ Res. 6 (1), 53 (1990).Google Scholar
  20. 20.
    P. M. Eletskii, O. O. Mironenko, S. A. Selishcheva, and V. A. Yakovlev, Catal. Ind. 8, 217 (2016).CrossRefGoogle Scholar
  21. 21.
    M. D. Lewan, Prepr. Pap. Am. Chem. Soc., Div. Fuel. Chem. 44, 420 (1999).Google Scholar
  22. 22.
    W. L. Lom and A. F. Williams, Substitute Natural Gas: Manufacture and Properties (Halsted Press, New York, 1976; Nedra, Moscow, 1979).Google Scholar
  23. 23.
    E. Fumoto, T. Tago, and T. Masuda, Energy Fuels 20, 1 (2006).CrossRefGoogle Scholar
  24. 24.
    A. Pereira, U.S. Patent No. 20 130 015 100 (January 2013).Google Scholar
  25. 25.
    I. Machin, J. C. Jesus, G. Rivas, I. Higuerey, J. Cordova, P. Pereira, F. Ruette, and A. Sierraalta, J. Mol. Catal. A: Chem. 227, 22 (2005).CrossRefGoogle Scholar
  26. 26.
    J. Carrazza, P. Pereira, and N. Martinez, U.S. Patent No. 5 688 395 (November 1997).Google Scholar
  27. 27.
    H. Rohallah, N. N. Nassar, and P. Pereira, Energy Fuels 27, 2194 (2013).CrossRefGoogle Scholar
  28. 28.
    E. Fumoto, T. Tago, T. Tsuji, and T. Masuda, Energy Fuels 18, 1770 (2004).CrossRefGoogle Scholar
  29. 29.
    J. L. Pinilla, P. Arcelus-Arrillaga, H. Puron, and M. Millan, Appl. Catal., A 459, 17 (2013).CrossRefGoogle Scholar
  30. 30.
    M. Sedighi, K. Keyvanloo, and J. Towfighi, Fuel 109, 432 (2013).CrossRefGoogle Scholar
  31. 31.
    Chinh Nguyen-Huy and Eun Woo Shin, Fuel 169, 1 (2016).CrossRefGoogle Scholar
  32. 32.
    Hak Sung Lee, Chinh Nguyen-Huy, Thanh-Truc Pham, and Eun Woo Shin, Fuel 165, 462 (2016).CrossRefGoogle Scholar
  33. 33.
    V. I. Sharypov, B. N. Kuznetsov, and N. G. Beregovtsova, Fuel 75, 791 (1996).CrossRefGoogle Scholar
  34. 34.
    P. Nhieu, Q. Liu, M. R. Gray, Fuel 166, 152 (2016).CrossRefGoogle Scholar
  35. 35.
    S. N. Khadzhiev, Kh. M. Kadiev, and M. Kh. Kadieva, Pet. Chem. 54, 323 (2014).CrossRefGoogle Scholar
  36. 36.
    M. J. Angeles, C. Leyva, J. Ancheyta, and S. Ramirez, Catal. Today 220–222, 274 (2014).CrossRefGoogle Scholar
  37. 37.
    G. Lv, F. Wang, W. Cai, and X. Zhang, Colloids Surf., A 447 (5), 8 (2014).CrossRefGoogle Scholar
  38. 38.
    M. Ya. Visaliev, M. Ya. Shpirt, Kh. M. Kadiev, V. I. Dvorkin, E. E. Magomadov, S. N. Khadzhiev, Khim. Tverd. Topl. No. 2, 32 (2012).Google Scholar
  39. 39.
    A. Guinier, Théorie et technique de la radiocristallographie (Dunod, Paris, 1956; Nauka, Moscow, 1961).Google Scholar
  40. 40.
    Hydroprocessing of Heavy Oils and Residua, Ed. by J. Ancheyta and J. G. Speight (CRC Press, Boca Ranton, 2007; Professiya, St. Petersburg, 2012).Google Scholar
  41. 41.
    V. D. Ryabov, Handbook on Petroleum and Gas Chemistry (Forum: Infra-M, Moscow, 2014).Google Scholar
  42. 42.
    Kh. M. Kadiev, S. N. Khadzhiev, and M. Kh. Kadieva, Pet. Chem. 53, 298 (2013).CrossRefGoogle Scholar
  43. 43.
    O. V. Klimov, G. I. Koryakina, E. Yu. Gerasimov, P. P. Dik, K. A. Leonova, S. V. Budukva, V. Yu. Pereima, D. D. Uvarkina, M. O. Kazakov, and A. S. Noskov, Catal. Ind. 7, 38 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • O. O. Mironenko
    • 1
  • G. A. Sosnin
    • 1
    • 2
  • P. M. Eletskii
    • 1
  • Yu. K. Gulyaeva
    • 1
  • O. A. Bulavchenko
    • 1
    • 2
  • O. A. Stonkus
    • 1
    • 2
  • V. O. Rodina
    • 1
  • V. A. Yakovlev
    • 1
  1. 1.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations