Advertisement

Petroleum Chemistry

, Volume 57, Issue 8, pp 657–665 | Cite as

Transformations of hydrocarbons of Ashal’hinskoe heavy oil under catalytic aquathermolysis conditions

  • G. P. Kayukova
  • L. E. Foss
  • D. A. Feoktistov
  • A. V. Vakhin
  • N. N. Petrukhina
  • G. V. Romanov
Article

Abstract

The influence of temperatures of 250, 300, and 350°C on the character of changes in the group and hydrocarbon compositions of heavy oil from the Ashal’chinskoe field in laboratory experiments on the simulation of oil aquathermolysis processes under reservoir conditions has been revealed. The experiments have been carried out in the presence of kaolin as a rock-forming mineral, using oil-soluble iron carboxylate and tetralin as a proton donor. It has been shown that temperature elevation to 300 and 350°C increases the amount of saturated fractions by factors of 1.5 and 1.75, respectively, and decreases the resin content almost by half in comparison with the initial oil. The proportion of n-alkanes and light alkylcyclohexane and trimethylalkylbenzene homologues in the saturated fractions increases as a result of cracking reactions involving the preferential degradation of high-molecular-weight resins. A noticeable increase in the amount of newly formed hydrocarbons and asphaltenes at the temperature of 350°C indicates that not only intensive cracking processes, but also condensation processes occur under these conditions. Changes in the quantitative and qualitative composition of the proton donor tetralin by its dehydrogenation to form naphthalene and hydrogenation to yield the cis- and trans-isomers of decalin have been revealed.

Keywords

heavy oil composition temperature transformations modeling aquathermolysis iron carboxylate proton donor 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Bakhtizina, Nauchno-Tekh. Vestn. OAO NK Rosneft’, No. 24, 30 (2011).Google Scholar
  2. 2.
    V. N. Makarevich, N. I. Iskritskaya, and S. A. Bogoslovskii, Neftegaz. Tekhnol., Teor. Prakt. 5 (2) (2010). http://www.ngtp.ru.Google Scholar
  3. 3.
    R. Kh. Muslimov, G. V. Romanov, G. P. Kayukova, et al. Integrated Development of Permian Heavy Oil and Natural Bitumen Deposits in the Republic of Tatarstan (FEN, Kazan, 2012) [in Russian].Google Scholar
  4. 4.
    R. S. Khisamov, Advanced Oilfield Development Technologies (Nedra, Moscow, 2004) [in Russian].Google Scholar
  5. 5.
    B. V. Uspenskii and I. F. Valeeva, Geology of Natural Bitumen Deposits in Tatarstan (PF Gart, Kazan, 2008) [in Russian].Google Scholar
  6. 6.
    G. P. Kayukova, G. V. Romanov, R. Kh. Muslimov, et al., Chemistry and Geochemistry of Permian Bitumens of Tatarstan (Nauka, Moscow, 1999) [in Russian].Google Scholar
  7. 7.
    G. P. Kayukova, S. M. Petrov, and B. V. Uspenskii, Properties of Permian Heavy Oils and Bitumens of Tatarstan in Natural and Anthropogenic Processes (GEOS, Moscow, 2015) [in Russian].Google Scholar
  8. 8.
    A. N. Shakirov, Geological Principles of Enhanced Oil Recovery from Paleozoic Pay Formations of Tatarstan (Nedra, St. Petersburg, 2003) [in Russian].Google Scholar
  9. 9.
    A. K. Kurochkin and S. P. Toptygin, Sfera Neftegaz, No. 1, 92 (2010).Google Scholar
  10. 10.
    D. P. Gregoli and A. A. Rimmer, US Patents No. 6 016 868 (2002).Google Scholar
  11. 11.
    S. L. Wellington, A. M. Madgavkar, and R. C. Ryan, RU Patent No. 2004115632 (2005).Google Scholar
  12. 12.
    G. N. Gordadze, M. V. Giruts, and V. N. Koshelev, Organic Geochemistry of Hydrocarbons, in two parts (RGU Nefti i Gaza Imeni I.M. Gubkina, Moscow, 2012), Part 1 [in Russian].Google Scholar
  13. 13.
    V. R. Antipenko, Thermal Transformations of Natural High-Sulfur Asphaltite: Geochemical and Engineering Aspects (Nauka, Novosibirsk, 2013) [in Russian].Google Scholar
  14. 14.
    H. Fan, Y. Zhang, and Y. Lin, Fuel 83, 2035 (2004).CrossRefGoogle Scholar
  15. 15.
    Liu Yongjian and Fan Hongfu, Energy Fuels 16, 842 (2002).CrossRefGoogle Scholar
  16. 16.
    S. K. Maity, J. Ancheyta, and G. Marroqum, Energy Fuels 24, 2809 (2010).CrossRefGoogle Scholar
  17. 17.
    J. E. Langdon and C. H. Ware, RU Patent No. 2475637 (2011).Google Scholar
  18. 18.
    N. N. Petrukhina, G. P. Kayukova, G. V. Romanov, et al., Khim. Tekhnol. Topl. Masel, No. 4, 30 (2014).Google Scholar
  19. 19.
    I. M. Abdrafikova, G. P. Kayukova, S. M. Petrov, et al., Pet. Chem. 55, 104 (2015).CrossRefGoogle Scholar
  20. 20.
    B. P. Tumanyan, N. N. Petrukhina, G. P. Kayukova, et al., Usp. Khim. 84, 1145 (2015).CrossRefGoogle Scholar
  21. 21.
    B. P. Tumanyan, G. V. Romanov, D. K. Nurgaliev, et al., Perspektivnye Aspekty Preobrazovaniya Vysokovyazkikh Neftei i Prirodnykh Bitumov v Promyslovykh Usloviyakh, No. 3, 6 (2014).Google Scholar
  22. 22.
    I. K. Ivanova, Neftegz. Delo, 1 (2008). http://www. ogbus.ru. Access April 1, 2013.Google Scholar
  23. 23.
    L. Schwark and F. Frimmel, Chem. Geol. 206, 231 (2004).CrossRefGoogle Scholar
  24. 24.
    N. A. Krasnoyarova, D. Yu. Chirkova, and O. V. Serebrennikova, Vestn. Tomsk. Gos. Univ., No. 388, 235 (2014).Google Scholar
  25. 25.
    D. E. Dmitriev, Candidate’s Dissertation in Chemistry (Tomsk, 2010).Google Scholar
  26. 26.
    G. P. Kayukova, A. T. Gubaidullin, S. M. Petrov, et al., Energy Fuels 30, 773 (2016).CrossRefGoogle Scholar
  27. 27.
    A. S. Kolbanovskaya and V. V. Mikhailov, Road Asphalts (Transport, Moscow, 1973) [in Russian].Google Scholar
  28. 28.
    R. R. Vazirov, S. P. Larionov, S. A. Obukhova, et al., Oxidative Catalytic Conversion of Heavy Petroleum Feedstock (Reaktiv, Ufa, 1999) [in Russian].Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • G. P. Kayukova
    • 1
    • 2
  • L. E. Foss
    • 1
    • 2
  • D. A. Feoktistov
    • 1
    • 2
  • A. V. Vakhin
    • 2
  • N. N. Petrukhina
    • 3
  • G. V. Romanov
    • 1
  1. 1.Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific CenterRussian Academy of SciencesKazan, TatarstanRussia
  2. 2.Kazan (Volga Region) Federal UniversityKazan, TatarstanRussia
  3. 3.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations