Advertisement

Petroleum Chemistry

, Volume 56, Issue 10, pp 915–919 | Cite as

Preparation of steel/titanium dioxide/titanium three-layer composite membranes

  • V. S. Mitin
  • V. I. Novikov
  • A. I. SharapaevEmail author
  • A. G. Muradova
Article

Abstract

Steel/TiO2/titanium composite membranes have been prepared by magnetron sputtering. The structure of the membrane substrate and that of the selective layers have been studied by scanning electron microscopy. It has been shown that membrane pores from 10 to 150 nm can be obtained by controlling the thickness of the deposited layer. It has been found that the adhesion of the ceramic and metal selective layers to the substrate is 0 according to the GOST 31149-2014 (ISO 2409:2013) classification. The steel/TiO2/titanium composite membranes possess high selectivity for high-molecular-weight substances and model suspended particles, with the flux of the membranes being on the order of 100 L/(m2 h bar) at a deposited-layer thickness of 1.5 μm.

Keywords

composite membrane magnetron sputtering titanium 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. W. Baker, Membrane Technology and Applications, 2nd Ed. (Wiley, Chichester, 2004).CrossRefGoogle Scholar
  2. 2.
    M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).CrossRefGoogle Scholar
  3. 3.
    Yu. G. Zmievskii, I. I. Kirichuk, V. G. Mironchuk, and D. D. Kucheruk, Membr. Membr. Tekhnol. 4, 149 (2014).Google Scholar
  4. 4.
    R. E. Kesting, Synthetic Polymeric Membranes: A Structural Perspective, 2nd Ed. (Wiley, New York, 1985).Google Scholar
  5. 5.
    Membranes and Membrane Technologies, Ed. by A. B. Yaroslavtsev (Nauchnyi Mir, Moscow, 2013) [in Russian].Google Scholar
  6. 6.
    A. W. Mohammad, Y. H. Teow, W. L. Ang, et al., Desalination 356, 226 (2015).CrossRefGoogle Scholar
  7. 7.
    T. V. Gestel, D. Sebold, W. A. Meulenberg, et al., Solid State Ionics 179, 1360 (2008).CrossRefGoogle Scholar
  8. 8.
    W. A. Meulenberg, J. Mertens, M. Bram, et al., J. Eur. Ceram. Soc. 26, 449 (2006).CrossRefGoogle Scholar
  9. 9.
    L. Zhonghong, Q. Nongxue, and Y. Gongming, J. Membr. Sci. 326, 533 (2009).CrossRefGoogle Scholar
  10. 10.
    V. V. Nazarov, G. G. Kagramanov, N. G. Medvedkova, and Yu. I. Dytnerskii, RU Patent No. 2 088 319 (1997).Google Scholar
  11. 11.
    G. A. Dibrov, E. G. Novitskii, V. P. Vasilevskii, et al., in Proceedings of XII All-Russia Scientific Conference “Membranes’2013” (Vladimir, 2013), p. 90 [in Russian].Google Scholar
  12. 12.
    V. N. Lapovok, V. I. Novikov, and L. I. Trusov, RU Patent No. 2 040 371 (1995).Google Scholar
  13. 13.
    V. I. Novikov, A. I. Sharapaev, D. A. Korostylev, and A. V. Kuz’min, Khim. Tekhnol., No. 10, 608 (2015).Google Scholar
  14. 14.
    V. I. Novikov, A. I. Sharapaev, A. B. Petunin, and A. G. Muradova, Khim. Tekhnol., No. 11, 667 (2015).Google Scholar
  15. 15.
    V. S. Mitin, E. I. Sharipov, and A. V. Mitin, Surf. Eng. 22, 5 (2006).CrossRefGoogle Scholar
  16. 16.
    C.-C. Li, J.-L. Huang, R.-J. Lin, et al., J. Mater. Res. 23, 579 (2008).CrossRefGoogle Scholar
  17. 17.
    GOST (State Standard) 31149-2014 (ISO 2409:2013): Paints and Varnishes: Cross-Cut Test (Standartinform, Moscow, 2014).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • V. S. Mitin
    • 1
  • V. I. Novikov
    • 2
  • A. I. Sharapaev
    • 3
    Email author
  • A. G. Muradova
    • 3
  1. 1.Bochvar Research Institute for Inorganic MaterialsMoscowRussia
  2. 2.OOO Membrane TechnologiesMoscowRussia
  3. 3.Mendeleev University of Chemical TechnologyMoscowRussia

Personalised recommendations