Petroleum Chemistry

, Volume 57, Issue 1, pp 85–92 | Cite as

Deactivation features of gallium-containing zeolites in the propane aromatization process

  • L. N. VosmerikovaEmail author
  • V. I. Zaikovskii
  • A. N. Volynkina
  • A. V. Vosmerikov


Conversion of propane to aromatic hydrocarbons on Ga-containing zeolite catalysts prepared by various methods has been examined, and their comparative stability against deactivation has been analyzed. It has been shown that the Ga-containing zeolite catalysts exhibit high activity and stability in propane conversion to aromatic hydrocarbons. Specific features of the formation of carbon deposits on the surface of Ga-containing zeolites in the propane aromatization reaction have been revealed using the techniques of temperature-programmed desorption of ammonia, low-temperature adsorption of nitrogen, differential thermal analysis, high-resolution transmission electron microscopy, and characteristic X-ray spectroscopy radiation. It has been found that the coke deposited on the catalyst has an almost homogeneous structure and is characterized by relatively low degree of polycondensation.


propane aromatic hydrocarbons zeolite conversion activity selectivity coke carbon deposits 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. A. Dergachev and A. L. Lapidus, Ross. Khim. Zh. (Zh. Ross. Khim. Ob-va im. D.I. Mendeleeva). 52 (4), 15 (2008).Google Scholar
  2. 2.
    Kh. M. Minachev and Dergachev, A.A., Itogi Nauki Tekh., Ser.: Kinet. Katal. 23, 3 (1990).Google Scholar
  3. 3.
    S. R. Rasulov, G. R. Mustafaeva, and L. A. Makhmudova, Neftepererab. Neftekhim., No. 1, 36 (2012).Google Scholar
  4. 4.
    L. N. Vosmerikova, Ya. E. Barbashin, and A. V. Vosmerikov, Pet. Chem. 54, 420 (2014).CrossRefGoogle Scholar
  5. 5.
    Y. Diaz, L. Melo, M. Mediavilla, et al., J. Mol. Catal. A: Chem. 227, 7 (2005).CrossRefGoogle Scholar
  6. 6.
    V. I. Zaikovskii, L. N. Vosmerikova, and A. V. Vosmerikov, Kinet. Catal. 53, 731 (2012).CrossRefGoogle Scholar
  7. 7.
    L. Melo, Y. Diaz, M. Mediavilla, et al., Catal. Today 133–135, 99 (2008).CrossRefGoogle Scholar
  8. 8.
    A. V. Vosmerikov and V. I. Erofeev, Zh. Fiz. Khim. 69, 787 (1995).Google Scholar
  9. 9.
    M. N. Mikhailov, I. V. Mishin, L. M. Kustov, and A. L. Lapidus, Microporous Mesoporous Mater. 104, 145 (2207).CrossRefGoogle Scholar
  10. 10.
    J. Biscardi and E. Iglesia, Catal. Today 31, 207 (1996).CrossRefGoogle Scholar
  11. 11.
    M. S. Pereira and M. A. C. Nascimento, Chem. Phys. Lett. 406, 446 (2005).CrossRefGoogle Scholar
  12. 12.
    Y. V. Joshi and K. T. Thomson, Catal. Today 105, 106 (2205).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • L. N. Vosmerikova
    • 1
    Email author
  • V. I. Zaikovskii
    • 2
    • 3
  • A. N. Volynkina
    • 1
  • A. V. Vosmerikov
    • 1
  1. 1.Institute of Petroleum Chemistry, Siberian BranchRussian Academy of SciencesTomskRussia
  2. 2.Boreskov Institute of Catalysis, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  3. 3.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations