Petroleum Chemistry

, Volume 56, Issue 7, pp 541–551 | Cite as

On the rheology of oil (Review)

  • A. Ya. MalkinEmail author
  • S. N. Khadzhiev


Current ideas concerning oil rheology, in particular, that of heavy oils and water–oil emulsions have been considered. It has been shown that petroleum in general is a viscoplastic medium, whose rheological properties in many cases are satisfactorily described in terms of the simple Bingham model. Typical characterization of rheological properties reduces to measurement of the yield point and the pour point and to conditional values obtained by measuring viscosity in viscometers of various types. However, both the yield stress and plastic viscosity are structurally sensitive, resulting in dependence of the rheological properties of oil on the temperature and deformation history, including the kinetics of cooling, which is characterized by a hysteresis curve in the measurement of viscosity. The kinetics of change in the rheological properties of oil depends on the concentration of crystallizable paraffins and other components. Rheology is modified largely by introducing pour point depressants into the oil. Another method for controlling the rheological properties of oil is to convert it into the state of water–oil emulsion using various surfactants. The general formulation of the problem of pipeline oil transport has been discussed, involving calculation based on the knowledge of both the rheological properties of oil and the kinetics of transient structuring processes. The latter is especially important for start-up modes of pipeline operation.


oil rheology paraffins viscoplastic medium Bingham equation yield strength structuring water–oil emulsion pipeline transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. Conaway, The Petroleum Industry: A Nomenclature Guide (Pennwell, Tulsa, 1999).Google Scholar
  2. 2.
    GOST (State Standard) 20287-91: Petroleum Products: Methods of Test for Flow Point and Pour Point (Standartinform, Moscow, 2006); ASTM D5853-95; ISO 3016.Google Scholar
  3. 3.
    V. F. Nikolaev, A. V. Egorov, M. A. Vasin, and I. V. Nikolaev, Zavod. Lab. Diagn. Mater. 78, 312 (2012).Google Scholar
  4. 4.
    D. W. Jennings and K. Weispfennig, Energy Fuels 19, 1376 (2005).CrossRefGoogle Scholar
  5. 5.
    R. Freedman, N. Heaton, M. Flaum, et al., SPE J. 8, 317 (2003).CrossRefGoogle Scholar
  6. 6.
    J. Bryan, A. Kantzas, and C. Bellehumeur, Viscosity predictions from low-field NMR measurements, in Proceedings of SPE Annual Technical Conference and Exhibition, San Antonio, Texas, USA (2002), Paper No. 89070.Google Scholar
  7. 7.
    S. Chen, G. Øye, and J. Sjöblom, Annu. Trans. Nordic Rheol. Soc. 14, 159 (2006).Google Scholar
  8. 8.
    K. Moussa, M. Djabourov, and J.-L. Volle, Fuel 83, 1591 (2004).CrossRefGoogle Scholar
  9. 9.
    A. Japper-Jaafar, P. T. Bhaskoro, L. L. I. Sean, et al., J. Non-Newton. Fluid Mech. 218, 71 (2015).CrossRefGoogle Scholar
  10. 10.
    M. T. Ghannam, S. W. Hasan, B. Abu-Jdayil, and N. Esmail, J. Pet. Sci. Eng. 81, 122 (2012).CrossRefGoogle Scholar
  11. 11.
    B. A. Tarcha, B. P. P. Forte, E. J. Soares, and R. L. Thompson, Rheol. Acta, 54, 479 (2015).CrossRefGoogle Scholar
  12. 12.
    O. Coussot, J. Non-Newton. Fluid Mech. 211, 31 (2014).CrossRefGoogle Scholar
  13. 13.
    L. Hou, Rheol. Acta 51, 603 (2012).CrossRefGoogle Scholar
  14. 14.
    H. P. Rønningsen, J. Pet. Sci. Eng. 7, 177 (1992).CrossRefGoogle Scholar
  15. 15.
    C. Chang, D. V. Boger, and Q. D. Nguyen, SPE J. 5, 148 (2000).CrossRefGoogle Scholar
  16. 16.
    C. H. Wu, K. S. Wang, P. J. Shuler, et al., AIChE J. 48, 2107 (2002).CrossRefGoogle Scholar
  17. 17.
    B. Jia and J. Zhang, Ind. Eng. Chem. Res. 51, 10982 (2012).Google Scholar
  18. 18.
    J. A. L. Silva and J. A. P. Coutinho, Rheol. Acta 43, 433 (2004).CrossRefGoogle Scholar
  19. 19.
    R. M. Webber, J. Rheol. 43, 911 (1999).CrossRefGoogle Scholar
  20. 20.
    P. Singh, H. S. Fogler, and N. Nagarajan, J. Rheol. 43, 1427 (1999).CrossRefGoogle Scholar
  21. 21.
    J. Sestak M. E. Charles, M. G. Cawkwell, and M. Houska, J. Pipelines 6, 15 (1987).Google Scholar
  22. 22.
    M. M. Denn and D. Bonn, Rheol. Acta. 50, 307 (2011).CrossRefGoogle Scholar
  23. 23.
    C. J. Dimitriou, G. H. McKinley, and R. Venkatesan, Energy Fuels 25, 3040 (2011).CrossRefGoogle Scholar
  24. 24.
    C. Pierre, L. Barré, A. Pina, and M. Moan, “Oil Gas Sci. Technol.—Rev. IFP 59, 489 (2004).CrossRefGoogle Scholar
  25. 25.
    R. S. Mohamed and A. C. S. Ramos, Energy Fuels 13, 323 (1999).CrossRefGoogle Scholar
  26. 26.
    R. Kumar, S. Mohapatra, A. Mandal, and T. K. Naiya, J. Pet. Sci. Res. 3, 90 (2014).CrossRefGoogle Scholar
  27. 27.
    M. Meriem-Benziane and H. Zahloul, Int. J. Mech. Aerospace Ind. Mechatron. Eng. 7, 223 (2013).Google Scholar
  28. 28.
    D. Broboana and C. Balan, U.P.B. Sci. Bull., Ser. B 69, 35 (2007).Google Scholar
  29. 29.
    R. Venkatesan, N. R. Nagarajan, K. Paso, et al., Chem. Eng. Sci. 60, 3587 (2005).CrossRefGoogle Scholar
  30. 30.
    A. Malkin, S. Ilyin, T. Roumyantseva, and V. Kulichikhin, Macromolecules 46, 257 (2013).CrossRefGoogle Scholar
  31. 31.
    G. Ovarlez, S. Rodts, X. Chateau, and O. Coussot, Rheol. Acta 48, 831 (2009).CrossRefGoogle Scholar
  32. 32.
    S. Lerouge and J.-F. Berret, Adv. Polym. Sci. 230, 1 (2010).CrossRefGoogle Scholar
  33. 33.
    J. P. Garsía-Sandoval, O. Manero, F. Bautista, and J. E. Puig, J. Non-Newton. Fluid Mech. 179/180, 43 (2012).CrossRefGoogle Scholar
  34. 34.
    R. L. Moorcroft and S. M. Fielding, Phys. Rev. Lett. 110, 086001 (2013).CrossRefGoogle Scholar
  35. 35.
    B. E. Wyskouzil, M. A. Kesslick, and J. H. Masliyah, Can. J. Chem. Eng. 65, 353 (1987).CrossRefGoogle Scholar
  36. 36.
    J. L. Zakin, R. Pinaire, and M. E. Borgmeyer, J. Fluid Eng. 101, 100 (1979).CrossRefGoogle Scholar
  37. 37.
    G. Nunez, M. Briceno, C. Mata, et al., J. Rheol. 40, 405 (1996).CrossRefGoogle Scholar
  38. 38.
    J. Sjöblom, N. Aske, I. H. Auflem, et al., Adv. Colloid Interface Sci. 100–102, 399 (2002).Google Scholar
  39. 39.
    A. P. Sullivan and P. K. Kilpatrick, Ind. Eng. Chem. Res. 41, 3389 (2002).CrossRefGoogle Scholar
  40. 40.
    I. Masalova and A. Ya. Malkin, Colloid J. 70, 362 (2008).CrossRefGoogle Scholar
  41. 41.
    R. Foudazi, S. Qavi, I. Masalova, and A. Ya. Malkin, Adv. Colloid Interface Sci. 220, 78 (2015).CrossRefGoogle Scholar
  42. 42.
    C. Barbato, B. Nogueira, M. Khalil, et al., Energy Fuels 28, 1717 (2014).CrossRefGoogle Scholar
  43. 43.
    C. van der Geest, V. C. B. Guersoni, D. Merino-Garcia, and A. C. Bannwart, Rheol. Acta 54, 545 (2015).CrossRefGoogle Scholar
  44. 44.
    P. R. de Souza-Mendes and R. L. Thompson, Rheol. Acta 52, 673 (2013).CrossRefGoogle Scholar
  45. 45.
    H. P. Ronningsen, J. Pet. Sci. Eng. 7, 177 (1992).CrossRefGoogle Scholar
  46. 46.
    M. R. Davidson, Q. D. Nguyen, C. Chang, and H. P. Ronningsen, J. Non-Newton. Fluid Mech. 123, 269 (2004).CrossRefGoogle Scholar
  47. 47.
    A. Wachs, G. Vinay, and I. Frigaard, J. Non-Newton. Fluid Mech. 159, 81 (2009).CrossRefGoogle Scholar
  48. 48.
    A. Ya. Malkin, Polym. Eng. Sci. 20, 1035 (1980).CrossRefGoogle Scholar
  49. 49.
    G. Vinay, A. Wachs, and J.-F. Agassant, J. Non-Newton. Fluid Mech. 128, 144 (2005).CrossRefGoogle Scholar
  50. 50.
    G. Vinay, A. Wachs, and J.-F. Agassant, J. Non-Newton. Fluid Mech. 136, 93 (2006).CrossRefGoogle Scholar
  51. 51.
    G. Vinay, A. Wachs, and I. Frigaard, J. Non-Newton. Fluid Mech. 143, 141 (2007).CrossRefGoogle Scholar
  52. 52.
    A. Ahmadpour, K. Sadeghy, and S.-R. MaddahSadatieh, J. Non-Newton. Fluid Mech. 205, 16 (2014).CrossRefGoogle Scholar
  53. 53.
    M. Fossen, T. Øyangen, and O. J. Velle, Energy Fuels 27, 3685 (2013).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  1. 1.Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscowRussia

Personalised recommendations