Advertisement

Petroleum Chemistry

, Volume 56, Issue 3, pp 275–280 | Cite as

Fischer–Tropsch synthesis with cobalt catalyst and zeolite multibed arrangement

  • E. Yu. AsalievaEmail author
  • E. V. Kul’chakovskaya
  • L. V. Sineva
  • V. Z. Mordkovich
  • B. M. Bulychev
Article
  • 54 Downloads

Abstract

The role of zeolite in transformations of hydrocarbons produced from CO and H2 over a Fischer–Tropsch cobalt catalyst under the conditions of multibed arrangement of the cobalt catalyst and the zeolite has been determined. Hydrocarbon conversion over the HBeta zeolite occurs via the bimolecular mechanism, as evidenced by a low methane yield and a high yield of unsaturated gaseous and liquid hydrocarbons. The conversion over the CaA zeolite obeys the unimolecular mechanism, as evidenced by the formation of increased amounts of methane and saturated gaseous C2–C4 hydrocarbons.

Keywords

Fischer–Tropsch synthesis cobalt catalyst zeolite skeletal cobalt 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Greener Fischer–Tropsch Processes for Fuels and Feedstocks, Ed. by P. M. Maitlis and A. de Klerk (Wiley–VCH, Weinheim, 2013).Google Scholar
  2. 2.
    R. C. Baliban, J. A. Elia, and Ch. A. Floudas, AIChE J. 59, 505 (2013).CrossRefGoogle Scholar
  3. 3.
    S. R. Deshmukh, A. L. Y. Tonkovich, J. S. McDaniel, et al., Biofuels 2, 315 (2011).CrossRefGoogle Scholar
  4. 4.
    A. E. Farrell, R. J. Plevin, B. T. Turner, et al., Science 311, 506 (2006).CrossRefGoogle Scholar
  5. 5.
    D. Song and J. Li, J. Mol. Catal. A: Chem. 247, 206 (2006).CrossRefGoogle Scholar
  6. 6.
    A. Y. Khodakov, W. Chu, and P. Fongarland, Chem. Rev. 107, 1692 (2007).CrossRefGoogle Scholar
  7. 7.
    L. V. Sineva, V. Z. Mordkovich, and E. Yu. Khatkova, Mendeleev Commun. 23, 44 (2013).CrossRefGoogle Scholar
  8. 8.
    S. Sartipi, M. Alberts, M. J. Meijerink, et al., ChemSusChem 6, 1646 (2013).CrossRefGoogle Scholar
  9. 9.
    C. Kibby, K. Jothimurugesan, T. Das, et al., Catal. Today 215, 131 (2013).CrossRefGoogle Scholar
  10. 10.
    Z.-W. Liu, X. Li, K. Asami, and K. Fujimoto, Fuel Process. Technol. 88, 165 (2007).CrossRefGoogle Scholar
  11. 11.
    L. V. Sineva, E. Yu. Asalieva, and V. Z. Mordkovich, Russ. Chem. Rev. 84, 1176 (2015).CrossRefGoogle Scholar
  12. 12.
    Zeolites and Catalysis: Synthesis, Reactions and Applications, Ed. by J. Cejka, A. Corma, and S. Zones (Wiley–VCH, Weinheim, 2010).Google Scholar
  13. 13.
    A. Martinez and G. Prieto, Top. Catal. 52, 75 (2009).CrossRefGoogle Scholar
  14. 14.
    L. V. Sineva, E. Yu. Asalieva, and V. Z. Mordkovich, Catal. Ind. 7, 245 (2015).CrossRefGoogle Scholar
  15. 15.
    D.-K. Lee, D.-S. Kim, T.-H. Kim, et al., Catal. Today 154, 237 (2010).CrossRefGoogle Scholar
  16. 16.
    T. Wakayama and H. Matsuhashi, J. Mol. Catal. A: Chem. 239, 32 (2005).CrossRefGoogle Scholar
  17. 17.
    A. Corma and A. V. Orchilles, Microporous Mesoporous Mater. 35/36, 21 (2000).CrossRefGoogle Scholar
  18. 18.
    N. Rahimi and R. Karimzadeh, Appl. Catal., A 398, 1 (2011).CrossRefGoogle Scholar
  19. 19.
    G. Caeiro, R. H. Carvalho, X. Wang, et al., J. Mol. Catal. A: Chem. 255, 131 (2006).CrossRefGoogle Scholar
  20. 20.
    B. G. Anderson, R. R. Schumacher, R. van Duren, et al., J. Mol. Catal. A: Chem. 181, 291 (2002).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • E. Yu. Asalieva
    • 1
    • 2
    Email author
  • E. V. Kul’chakovskaya
    • 1
  • L. V. Sineva
    • 1
    • 3
  • V. Z. Mordkovich
    • 1
    • 3
  • B. M. Bulychev
    • 2
  1. 1.Technological Institute for Superhard and Novel Carbon MaterialsTroitsk, Moscow oblastRussia
  2. 2.Moscow State UniversityMoscowRussia
  3. 3.OOO INFRA TekhnologiiMoscowRussia

Personalised recommendations